MX2 Quick Start Guide

1 SPECIFICATIONS 3
1.1 Upon receipt 3
1.2 Technical specification 4
1.3 Power ratings 4
2 INSTALLATION 6
2.1 Wiring sizes and protection 6
2.2 External dimensions for installation (IP20 \& IP54) 6
2.3 Installation Environment clearance 9
2.4 Wiring overview 10
2.5 Power wiring 11
2.6 Control wiring 11
2.7 Screwless terminals connection 12
2.8 Digital inputs SINK/SOURCE (NPN/PNP) settings 13
2.9 Safe stop disable function 13
3 PROGRAMMING MX2 14
3.1 Digital operator 14
3.2 Keypad navigation 15
3.3 Initialization 15
3.4 Inverter modes 16
3.5 Basic settings 17
3.6 Auto tuning (SLV Mode) 18
3.7 Ramps adjustment 20
3.8 DC Braking 21
3.9 V/F Curve 22
3.10 Torque boost function 23
3.11 Analog inputs 24
3.12 Digital inputs 25
3.13 Digital outputs 27
3.14 Pulse input 29
3.15 Analogue and pulse outputs 30
3.16 Torque limit 30
3.17 Torque control 31
3.18 Electronic thermal overload 31
3.19 Carrier frequency (PWM) 32
3.20 PID Function 33
3.21 Current limitation functions 33
3.22 Overvoltage protection 34
3.23 Controlled stop at power loss 35
4 PARAMETER LIST 35
4.1 Parameter group D: Monitors 35
4.2 Parameter group A 36
4.3 Parameter group B 39
4.4 Parameter group C 41
4.5 Parameter group H 42
4.6 Parameter group P 43
4.7 Parameter group F 45
4.8 Parameter group U: User parameters 45

2.4 Wiring overview

2.8 Digital inputs SINK/SOURCE (NPN/PNP) settings

2.9 Safe stop disable function

MX2 inverter incorporates a SAFE STOP function at hardware level according with EN60204-1 stop category 0 . It is designed to meet the requirements of the ISO13849-1, PL=d and IEC61508 SIL 2 only in a system in which EDM signal is monitored by an "external device monitor". Two redundant inputs are required (3/GS1 and 4/GS2). The function is purely hardware based. but to activate it you should set below switches to ON. This will fix the configuration of multi-function inputs 3 (C003=77) and 4 (C004=78) and also for the multi-function output 11 (C021=62).

When the switches are set to OFF the multi-function input and output the configuration is set to No function selection

3 PROGRAMMING MX2

3.1 Digital operator

The display is used in programming the inverter's parameters, as well as monitoring specific parameter values during operation

Items	Contents
(1) POWER LED	Turns ON (Green) while the inverter is powered up.
(2) ALARM LED	Turns ON (Red) when the inverter trips.
(3) Program LED	Turns ON (Green) when the display shows changeable parameter. Blinks when there is a mismatch in setting.
(4) RUN LED	Turns ON (Green) when the inverter is driving the motor.
(5) Monitor LED [Hz]	Turns ON (Green) when the displayed data is frequency related.
(6) Monitor LED [A]	Turns ON (Green) when the displayed data is current related.
(7) Run command LED	Turns ON (Green) when a Run command is set to the operator. (Run key is effective.)
(8) 7-seg LED	Shows each parameter, monitors etc.
(9) Run key	Makes inverter run.
(10) Stop/reset key	Makes inverter decelerates to a stop. Reset the inverter when it is in trip situation
(11) CYCLE key	Go to the top of next function group, when a function mode is shown Cancel the setting and return to the function code, when a data is shown Moves the cursor to a digit left, when it is in digit-to-digit setting mode Pressing for 1 second leads to display data of d00 I, regardless of current display.
(12) Up key	Increase or decrease the data. Pressing the both keys at the same time gives you the digit-to-digit edit.
(13) Down key	Go to the data display mode when a function code is shown Stores the data and go back to show the function code, when data is shown. Moves the cursor to a digit right, when it is in digit-to-digit display mode
(14) SET key	Connect USB connector (mini-B) for using PC communication
(15) USB connector	Connect RJ45 jack for remote operator
(16) RJ45 connector	

3.2 Keypad navigation

Pressing at the same time the up and down key in function code or data display will enable the single-digit edit mode that allows a faster navigation, refer to the manual for more details.

3.3 Initialization

You can restore all inverter parameters to the original factory (default) settings according to area of use. After initializing the inverter, use the power up test in Chapter 2 to get the motor running again. If operation mode (std. or high frequency) mode is changed, inverter must be initialized to activate new mode. To initialize the inverter, follow the steps below.

- Select initialization mode in b084.

00 Initialization disable
01 Clears trip history
02 Initializes all Parameters
03 Clears Trip history and initializes all parameters
04 Clears Trip history and initializes all parameters and drive programming

- If 6 O84 $=02,03$ or 04 , select initialization target data in 6094 .

00 All parameters
01 All parameters except I/O configuration
02 Only parameters register in Uxxx
03 All parameter except the ones registered in Uxxx and b037

- Setb 180=01

The following display appears for a few seconds, and initialization is completed with d001 displayed

Display during initialization

3.4 Inverter modes

Display code	Function name	Setting range/content	Initial value	Remarks
A044	V/f characteristic curve	00: Constant torque	0	For the second motor use parameter A244
		01: Reduced torque		
		02: Free V/F		
		03: Sensorless Vector Control		
b049	Dual rating selection	00: Constant torque 150\% overload during 60s	00	Some parameters default and ranges depends off this setting. Refer to below table for details
		01: Variable torque 120% overload during 60 s		
b171	Inverter mode selection	00: No function	00	To enable the new mode is necessary to initialize the inverter
		01: Standard Induction Motor		
		02: High Frequency Induction Motor		
		03: Permanent Magnet Motor		
d060	Inverter mode monitor	IM-CT (Induction motor constant torque)	-	Displays the current inverter mode use this one to check configuration as b171 returns to 0 after initialize
		IM-VT(Induction motor variable torque)		
		Hi-IM (High frequency induction motor)		
		PM (Permanent magnet motor)		

Neither the A044 or the b049 needs a initialization but remember to initialize the drive setting b180=01 when the inverter mode is changed on b171.

This table shows the parameters that change with the dual rating selectiong is modified

Name	Func. code	HD		ND	
		Range	initial data	Range	initial data
V/f characteristic curve	A044	$\begin{aligned} & \text { 00: Const. torque } \\ & \text { 01: Reduced torque } \\ & \text { 02: Free V/F } \\ & \text { 03: SLV } \end{aligned}$	00: Const. tq.	$\begin{aligned} & \text { 00: Const. torque } \\ & \text { 01: Reduced tq. } \\ & \text { 02: Free V/F } \end{aligned}$	00: Const. tq.
DC braking force for deceleration	A054	0 to 100 (\%)	50 (\%)	0 to 70 \%	50 (\%)
DC braking force at start	A057	0 to 100 (\%)	0 (\%)	0 to 70 \%	0 (\%)
Carrier frequency during DC braking	A059	2.0 to $15.0(\mathrm{kHz})$	$5.0(\mathrm{kHz})$	2.0 to $10.0(\mathrm{kHz})$	2.0(kHz)
Overload restriction level	b022	(0.20 to 2.00)	1.50 x Rated current	(0.20 to 1.50)	$1.20 \times$ Rated current
Overload restriction level 2	b025	x Rated current (A)		x Rated current (A)	
Carrier frequency	b083	2.0 to $15.0(\mathrm{kHz})$	$5.0(\mathrm{kHz})$	2.0 to $10.0(\mathrm{kHz})$	2.0(kHz)
Motor capacity	H003	0.1 to $15(\mathrm{~kW})$	Depends on type	0.2 to $18.5(\mathrm{~kW})$	One size up than HD

3.5 Basic settings

After selecting the inverter mode follow next steps for a basic operation of the inverter

- Select frequency reference source on parameter A001

Parameter n°	Parameter Name	Details
A001	Frequency source	00 Potentiometer of ext. operator
		01 Control terminals
		02 Digital operator (F001)
		03 ModBus Network
		04 Option
		06 Pulse train input
		07 Via Drive programming
		10 Calculate function output

- Select Run command source on parameter A002

Parameter n ${ }^{\text {o }}$	Parameter Name	Details
A002		01 Control terminals
		02 Run key on keypad or digital operator
		03 Modbus network input
		04 Option

- Adjust the stopping method by b091 and the acceleration/deceleration ramps on parameters F002 and F003

Parameter	Parameter Name	Details
b091	Stop mode selection	00: Deceleration to stop
		01: Free Run
F002	Acceleration time (1)	$\mathbf{0 . 0 1}$ to 3600.00
F003	Deceleration time (1)	$\mathbf{0 . 0 1}$ to 3600.00

- Set the motor base frequency and AVR voltage of the motors in parameters A003 and A082

Parameter	Parameter Name	Details
A003	Base Frequency	30.0 to maximum frequency in A004
A082	AVR voltage select	$200 \mathrm{~V}: 200$ to 240 V
		$400 \mathrm{~V}: 380$ to 480 V

- Set the motor data: rated current (b012), rated power (H003) and number of poles (H004)

Parameter	Parameter Name	Details
b012	Level of electronic thermal	20\% to $\mathbf{1 0 0 \%}$ of inverter rated current
H003	Motor capacity	0.1 to 18.5 KW
H004	Motor poles settings	2 to 48 poles

- When working in sensorless vector control perform motor auto tuning by parameter H001 (see next section for details)

At this point the inverter is ready to run the motor for the first time, but first review this check-list:

- Verify the power LED is ON. If not, check the power connections.
- Verify the PRG LED is OFF. If it is ON, review the instructions above.
- Make sure the motor is disconnected from any mechanical load.
- Make sure that you have a frequency reference checking the content of F001 and the Hz Led on operator
- Now give the RUN command from the selected source. The RUN LED will turn ON.
- The motor should start turning.
- Remove the RUN command or press the STOP key to stop the motor rotation.

3.6 Auto tuning (SLV Mode)

The MX2 inverter has auto-tuning function to get suitable motor control performance by measuring the motor constants automatically. Auto-tuning is effective only for sensorless vector control. Basically two modes are available the static and the rotative one:

- Static is less accurate but it could be used in situations where motor rotation could damage the mechanics. For this mode neither the I0 (no-load current) or the J (inertia) are calculated.
- Rotative auto-tuning moves the motor following a special operation pattern to find the motor characteristics. However, the torque during auto-tuning is not sufficient so is recommended to detach the mechanical system and don't use for example with vertical loads.

The Auto-tuning mode is selected by parameter H001 and after it finish succefully is necessary to to select the auto-tuning parameters by parameter H002.

Parameter	Parameter Name	Description
H001	Auto-tuning selection	00: Disable
		01: Enabled with motor stop
		02: Enabled with motor rotation
H 002	Motor constant selection	00: Standard motor
		02: Auto tuned data

For a correct auto-tuning calculation please take into account following recommendations before starting:

- Use only a motor of the same size or one size lower than the inverter.
- Be sure to disable the DC braking setting (A051=00)
- Be sure to deactivate ATR digital input (52: Enable torque cmd. input)
- Motor rotates up to 80% of base frequency, check if it's a problem for the application.
- Motor should not be driven by any other external force.
- All the brakes should be released
- Be sure that physical limtis of the machine will not be reach
- Even for none-rotative auto-tuning there is a risk that motor moves slightly

After checking the above points and setting parameter H001 procced with the activation of the Run command from the source selected on A002 and the auto-tuning will start. Please check the diagram on next page for detailed information of all the steps.

After the tuning the H 001 returns to " 00 " status and the motor characteristics are transferred to those parameter, remember to set H002 to use them.

Parameter	Parameter Name	Description
H030	Motor constant R1	0.001 to 65.535 Ohms
H031	Motor constant R2	0.001 to 65.535 Ohms
H032	Motor constant L	0.01 to 655.35 mH
H033	Motor constant I0	0.01 to 655.35 A
H034	Motor constant J	0.001 to 9999 kgm 2

Note: In case rotary tuning is not possible or autotuning results in very high No Load current (H033) (this is possible with small motors), please use this formula to calculate theoretical value:

$$
\text { H033 }=\operatorname{Inom}^{*} \sin (\arccos (\cos \mathrm{phi})) .
$$

Next diagram shows the auto－tuning procedure with motor rotation

A fine tuning could be achived setting parameter H 005 that adjust the motor speed response．If the motor vibrates at constant speed then you should reduce the H 005 setting，if on the contrary the response of the motor is not enough you could increase the value．

The H005 acts as a global gain response but also is possible to adjust the motor response at certain areas adjusting the motor parameters separately．
－The R1 parameter is adjusting the voltage applied at low speed，below $15-20 \mathrm{~Hz}$
－No load current I0 is used for adjusting the voltage above this $15-20 \mathrm{~Hz}$
－Finally R2 value is used to adjust the slip of the motor

3.7 Ramps adjustment

The basic frequency (speed) profile is defined by parameters contained in the " F " Group as shown to the right. The set running frequency is in Hz , but acceleration and deceleration are specified in the time duration of the ramp (from zero to maximum frequency, or from maximum frequency to zero).

Acceleration 1 and Deceleration 1 are the standard default accel and decel values for the main profile. Accel and decel values for an alternative profile are specified by using parameters $\operatorname{FOg} 2$ through 8093.

Acceleration and deceleration can be set via Drive programming as well via parameter P031

Parameter	Parameter Name	Description
A004	Maximum frequency	30.0 to 400.0 Hz
b082	Start frequency	0.01 to 9.99 Hz
F001	Output frequency setting	0.00 to 400.00 Hz
F002	Acceleration time(1)	0.01 to 3600.00 s
F003	Deceleration time(1)	0.01 to 3600.00 s
P031	Accel/Decel setting source selection	$00:$ Via operator
		$01:$ Via Drive Programming

Standard acceleration and deceleration is linear. The inverter CPU can also calculate an S-curve acceleration or deceleration curve as shown. This profile is useful for favoring the load characteristics in particular applications. Even if the shape of the ramps change the time keeps being the same one set in F002/F003
Curve settings for acceleration and deceleration are indepenently selected. To enable the S-curve, use function A097 (acceleration) and A098 (deceleration).

Parameter	Parameter Name	Description
A097	Acceleration curve selection	00: Linear curve 01: S-curve
A098	Deceleration curve selection	02: U-curve 03: Inverse U-curve 04: EL-S curve
A131	Acceleration curve constant	Range is 01 to 10.
A132	Deceleration curve constant	Range is 01 to 10.
A150	Curvature of EL-S-curve at the start of acceleration	Range is $\mathbf{0}$ to $\mathbf{5 0 \%}$
A151	Curvature of EL-S-curve at the end of acceleration	Range is $\mathbf{0}$ to $\mathbf{5 0 \%}$
A152	Curvature of EL-S-curve at the start of deceleration	Range is $\mathbf{0}$ to 50\%
A153	Curvature of EL-S-curve at the end of deceleration	Range is 0 to 50\%

This table shows the different acceleration shapes

Setting	00	01	02	03	04
Curve	Linear	S-curve	U-curve	Inverse U-curve	EL S-curve
A097 (Accel. pattern) A098 (Decel. pattern)					

3.8 DC Braking

The DC braking feature can provide additional stopping torque during deceleration or before acceleration and is particulary useful at low speeds when normal deceleration torque is minimal. This function injects a DC voltage into the motor windings which generates a DC current that force the motor to stop.

There are several modes available depending on the application requirements:

- Normal DC braking is used when A051 is set to "01" (Enable during stop) and the RUN command (FW/RV) is turned OFF, at the moment that deceleration stops the DC brake starts with a settable power (A054) and duration (A055). Additionally is possible to specify a wait time between the end of the ramp and the DC braking on parameter A053, during which the motor will free run. If free-run is selected as stopping method the DC braking will start just when the Run commands turns OFF.

- DC braking by frequency detection can be selected setting a051 to "02" (Frequency detection). In this case DC braking operates when the output frequency comes down to the one you specified in A052 while the RUN command is still active. External DB and internal DC braking are invalid during the frequency detection mode.

- Last option is to trigger the DC injection by a digital input when the terminal (DB) is turned ON. Set parameters A053 and A054 to setup this function. There are several cases depending on the motor rotation and Run command status.

DC braking at startup is also possible by independent setup of parameters A057 and A058. This is useful in aplications were load should be totally stopped before starting the movement.

Parameter	Parameter Name	Description
A051	DC braking enable	Three options; select codes: 00... Disable 01... Enable during stop 02... Frequency detection
A052	DC braking frequency	The frequency at which DC braking begins, range is from the start frequency (B082) to 60 Hz
A053	DC braking wait time	The delay from the end of controlled deceleration to start of DC braking (motor free runs until DC braking begins), range is 0.0 to 5.0 sec .
A054	DC braking force for deceleration	Level of DC braking force, settable from 0 to 100\%
A055	DC braking time for deceleration	Sets the duration for DC braking, range is from 0.0 to 60.0 seconds
A056	DC braking / edge or level detection for [DB] input	Two options; select codes: 00... Edge detection 01... Level detection
A057	DC braking force at start	Level of DC braking force at start, settable from 0 to 100%
A058	DC braking time at start	Sets the duration for DC braking, range is from 0.0 to 60.0 seconds
A059	Carrier frequency during DC braking	Carrier frequency of DC braking performance, range is from 2.0 to 15.0 kHz

Be careful to avoid specifying to long braking time or to hihg carrier frequency that can cause motor overheating. If you use DC braking is recommended to use motors with a built-in thermistor and wire it to inverter's thermistor input.

3.9 V/F Curve

The inverter generates the motor output according to the V/f algorithm selected on parameter A044. The factory default is Constant torque (" 00 "). Review the following description to help you choose the best torque control algorithm for your application.

Review following description to help you choose the best torque control algorithm for your application:.

- Constant and Variable (Reduced) Torque - The graph at right shows the constant torque characteristic from 0 Hz to the base frequency A003. The voltage remains constant for output frequencies higher than the base frequency.
- Variable torque - The graph at right shows the variable (reduced) torque curve, which has a constant torque characteristic from 0 Hz to 10% of the base frequency. This helps to achieve higher torque at low speed with reduced torque curve at higher speeds.
- Sensorless Vector Control - You can achieve high torque performance (200% torque at 0.5 Hz of output frequency) without motor speed feedback but a god tuning of the motor is necessary to do it. Please remember to perform auto-tuning for this control method. (A044="3")
- Free V/F Control - The free V/F setting function allows you to set an arbitrary V/F characteristics by specifying the voltages and frequencies (b100~b113) for seven points on the V/F characteristic curve (A044="2")

This table shows the details about the Free V/F control

3.10 Torque boost function

Manual torque boost - Constant and Vairable torque algorithms feature and asjustable torque boost curve that could help during the startup of load with very big inertia or friction. On those cases it may be necessary to increase the low frequency starting torque characteristic by boosting the voltage above the normal V/F ratio. Basically it attempsts to compensate for voltage drop in the motor primary winding in the low speed range.

Be aware that running the motor at a low speed for a long time can cause motor overheating and this is particularly true when manual torque boost is activated and motor doesn't have force ventilation.

Automatic torque boost- Use the voltage compensation (A046) and slip compensation (A047) to obtain a better performance under automatic torque boost mode (A041=01) ajusting the output frequency and output voltage automatically depending on the load. The output voltage due automatic boost is added to the manual torque boost voltage so both should be adjusted.

Parameter	Parameter Name	Description
A041	Torque boost select	Two options: $00 \ldots \quad$ Manual torque boost 01... Automatic torque boost
A042	Manual torque boost value	Can boost starting torque between 0 and 20\% above normal V/f curve, range is 0.0 to 20.0\%
A043	Manual torque boost frequency	Sets the frequency of the V/f breakpoint for torque boost, range is 0.0 to 50.0\%
A044	V/f characteristic curve	00... Constant torque $01 \ldots \quad$ Reduced torque (1.7) $02 \ldots \quad$ Free V/F
A045	V/f gain	03... Sensorless vector (SLV)
A046	Voltage compensation gain for auto- matic torque boost	Sets voltage compensation gain under automatic torque boost, range is 0. to 255.
A047	Slip compensation gain for auto- matic torque boost	Sets slip compensation gain under automatic torque boost, range is 0. to 255.

3.11 Analog inputs

MX2 provides two analog inputs, the input terminal group includes the [L], [OI], $[\mathrm{O}]$, and $[\mathrm{H}]$ terminals on the control connector, which provide for Voltage [O] or Current [OI] input. All analog input signals must use the analog ground [L].

If you use either the voltage or current analog input, you must select one of them using the logic input terminal function [AT] analog type. Refer to next table for details about the combinations between A005 and [AT] terminal. Remember that you must also set $\mathrm{A} 001=01$ to select analog input as the frequency source.
If [AT] function is not assigned to any digital input the inverter recognizes the [AT] as OFF and [O]+[OI] will be used as analog input. In case either (O) or (OI) is to be referred, please ground the other.

A005	$[\mathrm{AT}]$ Input	Analog Input Configuration
00	ON	$[\mathrm{O}]$
	OFF	$[\mathrm{OI}]$
02	ON	$[\mathrm{O}]$
	OFF	Integrated POT on external panel
03	ON	$[\mathrm{OI}]$
	OFF	Integrated POT on external panel

For [O] input and using parameters A013 and A014 you could select the portion of the voltage input range. Parameters A011 and A012 select the start and end frequency of the converted output frequency range, respectively. When the line does not begin at the origin (A011 and A013>0), then A015 defines whether the inverter outputs 0 Hz or the A011 specified frequency for analog input below A013.

Parameter	Parameter name	Description
A011	[O] start frequency	0.00 to 400.00
A012	[O] end frequency	0.00 to 400.00
A013	[O] start voltage	0. to 100%
A014	[O] end voltage	0. to 100%
A015	$[\mathrm{O}]$ start frequency enable	$00 \ldots \quad$ Use offset (A011 value) $01 . . \quad$ Use 0 Hz
A101	[OI] start frequency	0.00 to 400.00
A102	[OI] end frequency	0.00 to 400.00
A103	$[\mathrm{OI}]$ start voltage	0. to 100%
A104	$[\mathrm{OI}]$ end voltage	0. to 100%
A105	$[\mathrm{OI}]$ start frequency enable	$00 \ldots \quad$ Use offset (A101 value) $01 . . \quad$ Use 0 Hz
A016	Analog input filter	Range $\mathrm{n}=1$ to 31, 1 to $30 ~$$\times 2 \mathrm{~ms}$ filter
$31: 500 \mathrm{~ms}$ fixed filter with $\pm 0.1 \mathrm{kHz}$ hys.		

3.12 Digital inputs

The function codes in the following table let you assign between a wide range of functions to any of the seven logic inputs for the MX2 inverter. The functions C001 through C007 configure the terminals [1] through [7] respectively. The "value" of these particular parameters is not a scalar value, but it is a discrete number that selects one option from many available options.

Input Function Summary Table				
Option Code	Terminal Symbol	Function Name		Description
00	FW	FORWARD Run/Stop	ON	Inverter is in Run Mode, motor runs forward
			OFF	Inverter is in Stop Mode, motor stops
01	RV	Reverse Run/Stop	ON	Inverter is in Run Mode, motor runs reverse
			OFF	Inverter is in Stop Mode, motor stops
02	CF1	Multi-speed Select, Bit 0 (LSB)	ON	Binary encoded speed selection bit 3 to bit 0
03	CF2	Multi-speed Select, Bit 1		
04	CF3	Multi-speed Select, Bit 2	OFF	
05	CF4	Multi-speed Select, Bit 3 (MSB)		
06	JG	Jogging	ON	Inverter is in Run Mode, output to motor runs at jog parameter frequency
07	DB	External DC braking	ON	DC braking will be applied during deceleration
08	SET	Set (select) 2nd motor Data	ON	The inverter uses 2nd motor parameters for generating frequency output to motor
			OFF	The inverter uses 1st (main) motor parameters for generating frequency output to motor
09	2 CH	2-stage Acceleration and Deceleration	ON	Frequency output uses 2nd-stage acceleration and deceleration values
			OFF	Frequency output uses standard acceleration and deceleration values
11	FRS	Free-run Stop	ON	Causes output to turn OFF, allowing motor to free run (coast) to stop
12	EXT	External Trip	ON	When assigned input transitions OFF to ON, inverter latches trip event and displays E 12
			OFF	No trip event for ON to OFF, any recorded trip events remain in history until reset
13	USP	Unattended Start Protection	ON	On powerup, the inverter will not resume a Run command
			OFF	On powerup, the inverter will resume a Run command that was active before power loss
14	CS	Commercial power source switchover	ON	Motor can be driven by commercial power
			OFF	Motor is driven via the inverter
15	SFT	Software Lock	ON	The keypad and remote programming devices are prevented from changing parameters
			OFF	The parameters may be edited and stored
16	AT	Analog Input Voltage/Current Select	ON	Refer to Analog In put selection
			OFF	
18	RS	Reset Inverter	ON	The trip condition is reset, the motor output is turned OFF, and powerup reset is asserted
			OFF	Normal power-ON operation
19	PTC	PTC thermistor Thermal Protection (C005 only)	ANLG	When a thermistor is connected to terminal [5] and [L], the inverter checks for over-temperature and will cause trip event and turn OFF output to motor
			OPEN	A disconnect of the thermistor causes a trip event, and the inverter turns OFF the motor
20	STA	Start (3-wire interface)	ON	Starts the motor rotation
21	STP	Stop (3-wire interface)	ON	Stops the motor rotation
22	F/R	FWD, REV (3-wire interface)	ON	Selects the direction of motor rotation: ON = FWD. While the motor is rotating, a change of F / R will start a deceleration, followed by a change in direction
			OFF	Selects the direction of motor rotation: OFF = REV. While the motor is rotating, a change of F / R will start a deceleration, followed by a change in direction
23	PID	PID Disable	ON	Temporarily disables PID loop control. Inverter output turns OFF as long as PID Enable is active (A071=01)
			OFF	Has no effect on PID loop operation, operates normally if PID Enable is active (A071=01)
24	PIDC	PID Reset	ON	Resets the PID loop controller. Main consequence is that integrator sum is forced to zero
27	UP	Remote Control UP Function (motorized speed pot.)	ON	Accelerates (increases output frequency) motor from current frequency
28	DWN	Remote Control Down Function (motorized speed pot.)	ON	Decelerates (decreases output frequency) motor from current frequency
29	UDC	Remote Control Data Clearing	ON	Clears the UP/DWN frequency memory by forcing it to equal the set frequency parameter F001. Setting C101 must be set $=00$ to enable this function to work
31	OPE	Operator Control	ON	Forces the source of the output frequency setting A001 and the source of the Run command A002 to be from the digital operator
			OFF	Source of output frequency set by A001 and source of Run command set by A002 is used
32	SF1	Multi-speed Select, Bit 1	ON	Bit encoded speed select, Bit 1 to Bit 7
33	SF2	Multi-speed Select, Bit 2		
34	SF3	Multi-speed Select, Bit 3		
35	SF4	Multi-speed Select, Bit 4	OFF	
36	SF5	Multi-speed Select, Bit 5		
37	SF6	Multi-speed Select, Bit 6		
38	SF7	Multi-speed Select, Bit 7		
39	OLR	Overload Restriction Source Changeover	ON	Perform overload restriction
			OFF	Normal operation

Input Function Summary Table				
Option Code	$\begin{gathered} \text { Terminal } \\ \text { Symbol } \end{gathered}$	Function Name		Description
40	TL	Torque Limit Selection	ON	Setting of b040 is enabled
			OFF	Max. torque is limited with $\mathbf{2 0 0 \%}$
41	TRQ1	Torque limit switch 1	ON	Torque limit related parameters of Powering/regen, and FW/RV modes are selected by the
42	TRQ2	Torque limit switch 2	OFF	combinations of these inputs.
44	вок	Brake confirmation	ON	Brake confirmation signal received
			OFF	Brake confirmation signal not received
46	LAC	LAD cancellation	ON	Set ramp times are ignored. Inverter output immediately follows the freq. command.
			OFF	Accel. and/or decel. is according to the set ramp time
47	PCLR	Pulse counter clear	ON	Clear the position deviation data
			OFF	Maintain the position deviation data
50	ADD	ADD frequency enable	ON	Adds the A145 (add frequency) value to the output frequency
			OFF	Does not add the A145 value to the output frequency
51	F-TM	Force Terminal Mode	ON	Force inverter to use input terminals for output frequency and Run command sources
			OFF	Source of output frequency set by A001 and source of Run command set by A002 is used
52	ATR	Enable torque command input	ON	Torque control command input is enabled
			OFF	Torque control command input is disabled
53	KHC	Clear watt-hour data	ON	Clear watt-hour data
56	MII	General purpose input (1)	ON	General purpose input (1) to (7) under Drive programming
57	MI2	General purpose input (2)		
58	MI3	General purpose input (3)		
59	MI4	General purpose input (4)	OFF	
60	MI5	General purpose input (5)		
61	MI6	General purpose input (6)		
62	MI7	General purpose input (7)		
65	AHD	Analog command hold	ON	Analog command is held
			OFF	Analog command is not held
66	CP1	Multistage-position switch (1)	ON	Multistage position commands are set according to the combination of these switches.
67	CP2	Multistage-position switch (2)	OFF	
68	CP3	Multistage-position switch (3)		
69	ORL	Limit signal of homing	ON	Limit signal of homing is ON
70	ORG	Trigger signal of homing	ON	Starts homing operation
73	SPD	Speed/position changeover	ON	Speed control mode
			OFF	Position control mode
77	GS1*	GS1 input	ON	EN60204-1 related signals: Signal input of "Safe torque off" function.
78	GS2 *	GS2 input	OFF	
81	485	Start EzCOM	ON	Starts EzCOM
			OFF	No execution
82	PRG	Executing Drive programming	ON	Executing Drive program
			OFF	No execution
83	HLD	Retain output frequency	ON	Retain the current output frequency
84	ROK	Permission of Run command	ON	Run command permitted
85	EB	Rotation direction detection (C007 only)	ON	Forward rotation
			OFF	Reverse rotation
86	DISP	Display limitation	ON	Only a parameter configured in b038 is shown
			OFF	All the monitors can be shown
255	no	No function	ON	(input ignored)

All this functions could be assigned to any of the multi-function inputs on parameters C 001 to C 007 , select if the input will be normally open or normally close and the response time of the input.

Parameter	Parameter name	Description
C001	Input [1] function	Select input terminal [1] function
C002	Input [2] function	Select input terminal [2] function
C003	Input [3] function [GS1 assignable]	Select input terminal [3] function
C004	Input [4] function [GS2 assignable]	Select input terminal [4] function
C005	Input [5] function [PTC assignable]	Select input terminal [5] function
C006	Input [6] function	Select input terminal [6] function
C007	Input [7] function	Select input terminal [7] function

Parameter	Parameter name	Description
C011	Input [1] active state	Select logic conversion, two option codes: 00... normally open [NO] 01... normally closed [NC]
C012	Input [2] active state	
C013	Input [3] active state	
C014	Input [4] active state	
C015	Input [5] active state	
C016	Input [6] active state	
C017	Input [7] active state	
C160	Input [1] response time	Sets response time of each input terminal, set range: 0 (x 2 [ms]) to 200 (x 2 [ms])
C161	Input [2] response time	
C162	Input [3] response time	
C163	Input [4] response time	
C164	Input [5] response time	
C165	Input [6] response time	
C166	Input [7] response time	
d005	Intelligent input terminal status	

An input terminal configured for option code 18 ([RS] Reset command) cannot be configured for normally closed operation.

3.13 Digital outputs

Function codes in the following table let you assign different options into logical outputs (terminals [11],[12] and [AL]) on parameter C021, C022 and C026..

Input Function Summary Table				
Option Code	Terminal Symbol	Function Name	Description	
00	RUN	Run Signal	ON	When the inverter is in Run Mode
01	FA1	Frequency Arrival Type 1Constant Speed	ON	When output to motor is at the set frequency
			OFF	When output to motor is OFF, or in any acceleration or deceleration ramp
02	FA2	Frequency Arrival Type 2Over frequency	ON	When output to motor is at or above the set freq., even if in accel (CO42) or decel (C043) ramps
			OFF	When output to motor is OFF, or at a level below the set frequency
03	OL	Overload Advance Notice Signal 1	ON	When output current is more than the set threshold (CO41) for the overload signal
04	OD	Output Deviation for PID Control	ON	When PID error is more than the set threshold for the deviation signal
05	AL	Alarm Signal	ON	When an alarm signal has occurred and has not been cleared
06	FA3	Frequency Arrival Type 3Set frequency	ON	When output to motor is at the set frequency, during accel (CO42) and decel (C043).
07	OTQ	Over/under Torque Signal	ON	Estimated motor torque exceeds the specified level
09	UV	Undervoltage	ON	Inverter is in Undervoltage
10	TRQ	Torque Limited Signal	ON	Torque limit function is executing
11	RNT	Run Time Expired	ON	Total running time of the inverter exceeds the specified value
12	ONT	Power ON time Expired	ON	Total power ON time of the inverter exceeds the specified value
13	THM	Thermal Warning	ON	Accumulated thermal count exceeds the C061 set value
19	BRK	Brake Release Signal	ON	Output for brake release
20	BER	Brake Error Signal	ON	Brake error has occurred
21	ZS	Zero Hz Speed Signal	ON	Output frequency falls below the threshold specified in C063
22	DSE	Speed Deviation Excessive	ON	Deviation of speed command and actual speed exceeds the specified value P027.
23	POK	Positioning Completion	ON	Positioning is completed
24	FA4	Frequency Arrival Type 4Over frequency	ON	When output to motor is at or above the set freq., even if in accel (CO45) or decel (C046) ramps
25	FA5	Frequency Arrival Type 5Set frequency	ON	When output to motor is at the set frequency, during accel (CO45) and decel (C046).
26	OL2	Overload Advance Notice Signal 2	ON	When output current is more than the set threshold (C111) for the overload signal
27	ODc	Analog Voltage Input Disconnect Detection	ON	When the [0] input value < B070 setting (signal loss detected)
28	OIDc	Analog Current input Disconnect Detection	ON	When the [OI] input value < B071 setting (signal loss detected)

Input Function Summary Table				
Option Code	Terminal Symbol	Function Name		Description
31	FBV	PID Second Stage Output	ON	Transitions to ON when the inverter is in RUN Mode and the PID Process Variable (PV) is less than the Feedback Low Limit (C053)
			OFF	Transitions to OFF when the PID Process Variable (PV) exceeds the PID High Limit (C052), and transitions to OFF when the inverter goes from Run Mode to Stop Mode
32	NDc	Network Disconnect Detect	ON	When communications watchdog timer (period specified by C077) has time out
33	LOG1	Logic Output Function 1	ON	When the Boolean operation specified by C143 has a logical "1" result
34	LOG2	Logic Output Function 2	ON	When the Boolean operation specified by C146 has a logical "1" result
35	LOG3	Logic Output Function 3	ON	When the Boolean operation specified by C149 has a logical "1" result
39	WAC	Capacitor Life Warning Signal	ON	Lifetime of internal capacitor has expired.
40	WAF	Cooling Fan Warning Signal	ON	Lifetime of cooling fan has expired.
41	FR	Starting Contact Signal	ON	Either FW or RV command is given to the inverter
			OFF	No FW or RV command is given to the inverter, or both are given to the inverter
42	OHF	Heat Sink Overheat Warning	ON	Temperature of the heat sink exceeds a specified value (C064)
43	LOC	Low load detection	ON	Motor current is less than the specified value (C039)
44	M01	General Output 1	ON	General output 1 is ON (Used by Drive programing)
45	MO2	General Output 2	ON	General output 2 is ON (Used by Drive programing)
46	MO3	General Output 3	ON	General output 3 is ON (Used by Drive programing)
50	IRDY	Inverter Ready Signal	ON	Inverter can receive a run command
51	FWR	Forward Rotation	ON	Inverter is driving the motor in forward direction
52	RVR	Reverse Rotation	ON	Inverter is driving the motor in reverse direction
53	MJA	Major Failure Signal	ON	Inverter is tripping with major failure
54	WCO	Window Comparator for Analog Voltage Input	ON	Analog voltage input value is inside of the window comparator
55	WCOI	Window Comparator for Analog Current Input	ON	Analog current input value is inside of the window comparator
58	FREF	Frequency Command Source	ON	Frequency command is given from the operator
59	REF	Run Command Source	ON	Run command is given from the operator
60	SETM	2nd motor Selection	ON	2nd motor is being selected
62	EDM	STO (Safe Torque Off) Performance Monitor (Output terminal 11 only)	ON	STO is being performed
63	OPO	Option card output	ON	(output terminal for option card)
255	no	Not used	ON	-

In the same way of that the digital inputs is possible to choose between normally close and normally open and even is possible to use some On and Off delay for each of the outputs.

Parameter	Parameter name	Description
C021	$\begin{array}{l}\text { Output [11] function } \\ \text { [EDM assignable] }\end{array}$	$\begin{array}{l}\text { Programmable functions available for logic } \\ \text { (discrete) outputs transistor type }\end{array}$
C022	Output [12] function	Alarm relay function

(discrete) outputs relay type\end{array}\right]\)

3.14 Pulse input

Pulse train input in terminal EA could be used as frequency reference, PID input, encoder feedback for position control and also as an input for Drive Programming. The maximum frequency for this pulse input is 32 KHz and the selection is done by parameter P003.

Encoder feedback setting is set in parameter P004, but please remember that this is just for positioning function and close loop vector control can't be performed with MX2 because this encoder reading is not included into the speed loop. For selection " 01 " and " 02 " on P004 is possible to use a 2 -phase differential encoder but the second channel should be connect to multi-funciton input 7 with the function code "EB".

Parameter	Parameter name	Description
P003	[EA] terminal selection	00... Speed reference (incl. PID) 01... For control with encoder feedback 02... Extended terminal for EzSQ
P004	Pulse train input mode selection for feedback	Four option codes: 00...Single-phase pulse [EA] $01 \ldots 2$-phase pulse (90° difference) 1 ([EA] and [EB]) $02 \ldots 2$-phase pulse (90° difference) 2 ([EA] and [EB]) 03...Single-phase pulse [EA] and direction signal [EB]
P011	Encoder pulse setting	Sets the pulse number (ppr) of the encoder, set range is $32 \sim 1024$ pulses
P055	Pulse train input frequency scale setting	Sets the pulse numbers at max. frequency, set range is $1.0 \sim 32.0 \mathrm{kHz}$
P056	Pulse train input frequency filter time constant setting	Set range is $0.01 \sim 2.00 \mathrm{sec}$.
P057	Pulse train input bias setting	Set range is -100~100\%
P058	Limitation of the pulse train input setting	Set range is $\mathbf{0} \sim 100 \%$

The pulse input when used as frequency reference could be adjusted with parameters P055 to P058 according to this diagram

3.15 Analogue and pulse outputs

Several monitors are available through the pulse output [EO] or the analogue output [AM].

Parameter	Parameter name		Description
C027	[EO] terminal selection (Pulse/PWM	$00 \ldots$	Output frequency (PWM)
	output)	$01 .$.	Output current (PWM)
		$02 \ldots$	Output torque (PWM)
		$03 \ldots$	Output frequency (Pulse train)
		$04 \ldots$	Output voltage (PWM)
		$05 \ldots$	Input power (PWM)
		$06 \ldots$	Electronic thermal load ratio (PWM)
		$07 \ldots$	LAD frequency (PWM)
		$08 \ldots$	Output current (Pulse train)
		$10 \ldots$	Heat sink temperature (PWM)
		$12 \ldots$	General output (PWM)
		$15 \ldots$	Pulse train input monitor
			$16 \ldots$

For the pulse train output there are two types of outputs, code " 03 ", " 08 " and " 15 " outputs a pulse train with a 50% duty cycle while the PWM has a fixed frequency of 156.25 Hz were the duty cycle is changed depending on the output.

3.16 Torque limit

Torque limit function allows you to limit the motor output when sensorless vector control (SLV) is selected in A044. This function has limited accuracy and repeatability and is realiable only above $15-20 \mathrm{~Hz}$. You can choose between models using parameter b040.

Quadrant specific setting mode (b040=00) in which individual torque limit value are applied on the four quadrants (forward powering, reverse regeneration..) by torque limits 1 to 4 (b041 to b044)

$(-)$
Terminal-switching mode (b040=01) where the torque limit values set in torque limits 1 to 4 (b041 to b044) are switched depending on the combination of the states of the torque limit switch terminals 1 and 2 (TRQ1 and TRQ2) assigned to digital inputs.
Analog voltage input mode (b040=02) where the torque limit value is set by a voltage applied to the terminal O . Range 0 to 10 V corresponds with torque limit range between 0 and 200% that is valid for all operating states.

If "TL" torque limit enable functions has been assigned to any of the multi-function inputs the setting of parameter b040 only is valid when this input is ON. No torque limitation will be applied whe the input is OFF.

Parameter	Parameter name	Description	
b040	Torque limit selection	00	Quadrant-specific setting mode
		$01 \quad$ Terminal-switching mode	
		02	Analog voltage input mode (\mathbf{O})
b041	Torque limit 1 (fwd/power)	Torque limit level in forward powering quadrant, range is 0 to 200\% / no(disabled)	

Parameter	Parameter name	Description
b022	Torque limit 2（rev／regen．）	Torque limit level in reverse regen．quadrant，range is 0 to 200\％／no（disabled）
b043	Torque limit 3（rev／power）	Torque limit level in reverse powering quadrant，range is 0 to 200\％／no（disabled）
b044	Torque limit 4（fwd／regen．）	Torque limit level in forward regen．quadrant，range is 0 to 200\％／no（disabled）
b045	Torque LAD STOP selection	$\mathbf{0 0} \quad$Disable Enable

100% torque is referred to inverter rated current，absolute torque value is up the motor to be combined．

3．17 Torque control

Torque control in open loop could be achieve with following parameters． 100% torque is referred to inverter rated current but absolute torque value depends on the motor connected．It has limited accuracy and working range so is recomended only above $15-20 \mathrm{~Hz}$ and over $20-30 \%$ of the motor torque capacity．

Parameter	Parameter name	Description
P033	Torque command input selection	00．．．Analog voltage input［O］ 01．．．Analog current input［OI］ 03．．．Operator，06．．．Option
P034	Torque command level input	Set range is 0～200\％
P036	Torque bias mode selection	00．．．According to the sign 01．．．According to the rotation direction 05．．．Option
P037	Torque bias value setting	Range is－200～200\％
P038	Torque bias polar selection	00 ．．．No bias 01．．．Operator
P039	Speed limit of Torque control（Forward rotation）	Set range is $0.00 \sim 120.00 \mathrm{~Hz}$
P040	Speed limit of Torque control（Reverse rotation）	Set range is $0.00 \sim 120.00 \mathrm{~Hz}$
P041	Speed／Torque control switching time	Set range is 0 to 1000 ms

To enable the torque control is necessary to assign the＂ATR＂（Enable torque command input）to one of the multi－function inputs and set it to ON．When the input is OFF the inverter will work in speed mode．

At low speed，small torque command or 4 quadrant control applications the perfomance of this function will be limited due the open loop system．

3．18 Electronic thermal overload

The thermal overload detection protects the inverter and motor from overheating due to an excessive load using a current inverse time curve to determine the trip point．The characteristic curve depends on dual rate setting in b049 and is unique for both inverter and motor but reduction rate depending on the frequency could be selected in parameter b013．
$6049=00(\mathrm{HD})$

$6049=01(\mathrm{ND})$

b013 could be used to match the torque characteristic with the load. Output current on the winding is used for this calculation as is proportional to the torque generated by the motor. That's why the current level has to be set in parameter b012 with a range that goes from 20 to 100% of the inverter rated current.

Parameter	Parameter name	Description
b012	Level of electronic thermal	Set a level between 20% and 100% for the rated inverter current.
b013	Electronic thermal characteristic	Select from three curves, option codes: $00 \ldots \quad$ Reduced torque $01 \ldots \quad$ Constant torque $02 \ldots \quad$ Free setting
b015	Free setting electronic thermal \sim freq. 1	Range is 0 to 400 Hz
b016	Free setting electronic thermal \sim current1	Range is 0 to inverter rated current Amps
b017	Free setting electronic thermal \sim freq.2	Range is 0 to 400 Hz
b018	Free setting electronic thermal \sim current2	Range is 0 to inverter rated current Amps
b019	Free setting electronic thermal \sim freq. 3	Range is 0 to 400 Hz
b020	Free setting electronic thermal \sim current3 3	Range is 0 to inverter rated current Amps

3.19 Carrier frequency (PWM)

The internal switching frequency of the inverter circuitry (also called chopper frequency) defines the IGBT communtation speed that is used to generated the output frequency. Is adjustable from 2.0 to 15 KHz (depending on the inverter size) where the audible noise decrease at higher frequencies while the RFI noise and leakage current increase.

The carrier frequency is adjusted by parameter b083 but the activation of the aumatic carrier frequency reduction on parameter b089 could reduce the selected value when the output current increase or when the heat sink temperature is too high. On this way is possible to have a high carrier frequency with light loads and avoid the derating when the load increase. The upper limit is defined by b083 while the lower one is 3 KHz with 2 KHz per second reduction rate.

Parameter	Parameter name	Description
b083	Carrier frequency	Sets the PWM carrier (internal switching frequency), range is 2.0 to 15.0 kHz
b089	Automatic carrier frequency reduction	Three option codes:
		$00 \quad$ Disabled
	$01 \quad$ Enabled, depending on the output current	
	$02 \quad$ Enabled, depending on the heat-sink temperature	

3.20 PID Function

When enabled, the built-in PID loop calculates an ideal inverter output value that cause the loop feedback process variable (PV) to move closer to the set point value (SP). The frequency command is used as SP and the PID loop algorithm will read the analog input for the process variable and calculate the proper inverter output to reach it.

In standard operation, inverter uses a reference source selected by A001 for the output frequency which may be a fixed or variable value. To enable PID operation is necessary to set A071 to "01" and this will cause the inverter to calculate the target frequiency or set point. This presents some advantges like potential energy saving and direct control over the process variable instead of the motor speed.

Parameter	Parameter name	Description
A071	PID enable	00... PID Disable 01... PID Enable 02... PID Enable with reverse output
A072	PID proportional gain	Proportional gain has a range of 0.00 to 25.00
A073	PID integral time constant	Integral time constant has a range of 0.0 to 3600 seconds
A074	PID derivative time constant	Derivative time constant has a range of 0.0 to 100 seconds
A075	PV scale conversion	Process Variable (PV), scale factor (multiplier), range of 0.01 to 99.99
A076	PV source	Selects source of Process Variable (PV), option codes: 00.. [OI] terminal (current in) 01.. [O] terminal (voltage in) 02 .. ModBus network 03.. Pulse train input 10 Calculate function output
A077	Reverse PID action	Two option codes: 00 PID input = SP-PV 01 PID input = -(SP-PV)
A078	PID output limit	Sets the limit of PID output as percent of full scale, range is 0.0 to $\mathbf{1 0 0 . 0} \%$
A079	PID feed forward selection	00... Disabled 01... [O] terminal (voltage in) 02... [OI] terminal (current in)
A156	PID sleep function action threshold	Sets the threshold for the action, set range $0.0 \sim 400.0 \mathrm{~Hz}$
A157	PID sleep function action delay time	Sets the delay time for the action, set range $0.0 \sim 25.5 \mathrm{sec}$
A071	PID enable	00... PID Disable 01... PID Enable 02... PID Enable with reverse output

3.21 Current limitation functions

Overload Restriction reduce the output frequency while motoring or increase it during regeneration to restrict the overload when the output current exceeds a certain limit. You can adjust the inverter to apply overload retriction only during constant speed allowing higher currents for acceleration.

Additionally two separate set of parameters are avaiable and is possible to choose between them by intelligent input terminal " 39 : OLR".

Over-current Trip Suppression function monitors the motor current and actively changes the output frequency profile to keep the motor current below 150% of the motor rated current. Basically the acceleration ramp is at stopped above this current and it only restarts when the current goes below again. It avoids the trip but the total acceleration time could be longer when this function is enable.

Additionally should be considered that this function doesn't operate keeping a constant motor current so is still possible to have an over-current trip during extreme acceleration.

Parameter	Parameter name	Description
b021	Overload restriction operation mode	00 Disabled 01 Enabled for acceleration and constant speed 02 Enabled for constant speed only 03 Enabled for acceleration and constant speed, increase speed at regen.
b022	Overload restriction level	Sets the level of overload restriction, between 20% and 200% of the rated current of the inverter, setting resolution is 1% of rated current
b023	Deceleration rate at overload restriction	Sets the deceleration rate when inverter detects overload, range is 0.1 to 3000.0, resolution 0.1
b024	Overload restriction operation mode 2	00 Disabled 01 Enabled for acceleration and constant speed 02 Enabled for constant speed only 03 Enabled for acceleration and constant speed, increase speed at regen.
b025	Overload restriction level 2	Sets the level of overload restriction, between 20% and 200% of the rated current of the inverter, setting resolution is 1% of rated current
b026	Deceleration rate 2 at overload restriction	Sets the deceleration rate when inverter detects overload, range is 0.1 to 3000.0, resolution 0.1
b027	OC suppression selection *	00 Disabled 01 Enabled

3.22 Overvoltage protection

DC Bus AVR (Automatic Voltage regulation) helps to avoid an overvoltage trip when the DC bus voltage increase due regeneration during deceleration. The function keeps the DC bus voltage stable at certain level regulating the deceleration ramp by a PI function. Please note that the actual deceleration time can be longer in this case.

Parameter	Parameter name	Description
b130	Deceleration overvoltage sup- pression enable	$00 \quad$Disabled 01\quadEnabled Enabled with accel. b131 Decel. overvolt. suppress level b132 DC bus voltage of suppression. Range is: 200 V class 330 to 395 400 V class 660 to 790
b133	Decel. overvolt. suppress proportional gain	Proportional gain when b130=01. Range is: 0.00 to 5.00
b134	Decel. overvolt. suppress integral time	Integration time when b130=01. Range is: 0.00 to 150.0

3．23 Controlled stop at power loss

This function is intended to achieve a controlled stop and avoid free－running of the motor when power is lost during run mode． Inverter controls the internal DC bus voltage while decelerating the motor using the regenerative energy to keep the DC bus at a level that allows to reduce the motor speed and avoid a long coasting time．Next diagram shows how the function works：

When the DC voltage of the inverter goes down to b051 level，inverter decrease the output frequency by a amount set in b054 to force the motor to regenerate energy that is used to increase the DC bus value．After this the deceleration continue at the rate set in b053 until the upper limit b052 is reach were the deceleration ramp stops until the DC bus drops again．This operation is repa－ ted until the motor is totally stopped or there is not enough regeneration from the motor and the DC bus goes below the under－ voltage level．

Parameter	Parameter name	Description
b050	Controlled deceleration on power loss	00 Trips 01 Decelerates to a stop 02 Decelerates to a stop with DC bus voltage controlled 03 Decelerates to a stop with DC bus voltage controlled，then restart
b051	DC bus voltage trigger level of ctrl．decel．	Setting of DC bus voltage to start controlled decel．operation．Range is 0.0 to 1000.0
b052	Over－voltage threshold of ctrl．decel．	Setting the OV－LAD stop level of controlled decel．operation．Range is $\mathbf{0 . 0}$ to 1000.0
b053	Deceleration time of ctrl．decel．	Range is 0.01 to $\mathbf{3 6 0 0 . 0}$
b054	Initial freq．drop of ctrl．decel．	Setting of initial freq．drop．Range is 0.0 to 10.0 Hz

4 PARAMETER LIST

The PDU（Process Data Unit）register number are addressed starting at zero．Therefore register numbered＂ 0012 h ＂addressed as ＂ 0011 h ＂．Register address value（transmited on Modbus line）is 1 less than the Register number of the table

4．1 Parameter group D：Monitors

Function code	Function name	Monitoring and setting items	Units	Modbus Register No．
d001（32－bits）	Output frequency monitor	0 to 40000（100000）	0.01 ［Hz］	1001h
				1002h
d002	Output current monitor	0 to 65530	0.01 ［A］	1003h
d003	Rotation direction minitoring	0：Stopping，1：Forward rotation， 2：Reverse rotation	0.1 ［Hz］	1004h
d004（32－bits）	Process variable（PV），PID feedback monitoring	0 to 1000000	0.1	1005h
				1006h
d005	Intelligent input terminal status	2＾0：Terminal 1 to $2^{\wedge} 6$ ：Terminal 7	1 bit	1007h
d006	Intelligent output terminal status	$\mathbf{2}^{\wedge} 0$ ：Terminal 11 to $2^{\wedge} 1$ ：Terminal 12／ 2＾2：Relay Terminal	1 bit	1008h
d007（high）	Scaled output frequency monitor	0 to 4000000（10000000）	0.01	1009h
d007（low）				100Ah
d008（high）	Actual－frequency monitor	-100000 to +100000	0.01 ［Hz］	100Bh
d008（low）				100Ch
d009	Torque command monitor	-200 to +200	1 ［\％］	100Dh

Function code	Function name	Monitoring and setting items	Units	Modbus Register No.
d010	Torque bias monitor	-200 to +200	1 [\%]	100Eh
d012	Torque monitor	-200 to +200	1 [\%]	1010h
d013	Output voltage monitor	0 to 6000	0.1 [V]	1011h
d014	Power monitor	0 to 1000	0.1 [kW]	1012h
d015 (32-bits)	Watt-hour monitor	0 to 9999000	0.1	1013h
				1014h
d016 (32-bits)	Elapsed RUN time monitor	0 to 999900	1 [h]	1015h
				1016h
d017 (32-bits)	Elapsed power-on time monitor	0 to 999900	1 [h]	1017h
				1018h
d018	Heat sink temperature monitor	-200 to 1500	0.1 [?]	1019h
d022	Life-check monitor	$\mathbf{2}^{\wedge}$ 0: Capacitor on main circuit board $2^{\wedge} 1$: cooling-fan	1 bit	101Dh
d023	Drive programming program counter	0~1024		101Eh
d024	Drive programming program number	0~9999		101Fh
d025(32-bits)	User monitor 1	-2147483647 to 2147483647	1	102Eh
				102Fh
d026(32-bits)	User monitor 2	-2147483647 to 2147483647	1	1030h
				1031h
d027(32-bits)	User monitor 3	-2147483647 to 2147483647	1	1032h
				1033h
d029(32-bits)	Position setting monitor	-268435455 to 268435455	1	1036h
				1037h
d030(32-bits)	Position feedback monitor	-268435455 to 268435455	1	1038h
				1039h
d60	Inverter mode monitor	$\begin{array}{\|l\|} \hline 0 \text { (IM CT) } \\ \text { 2(IM High Freq mode) } \\ 1 \text { (IM VT) } \\ \hline \end{array}$		1057h
d80	Trip counter	0 to 65530	-	0011h
d081	Trip info 1	Trip factor Inverter status Output frequency (32-bit) Output current Output voltage Running time (32-bit) Power-on time (32-bit)	-	$\begin{array}{\|l\|} \hline \text { 0012h to } \\ \text { 001Bh } \end{array}$
d082	Trip info 2		-	001Ch to 0025h
d083	Trip info 3		-	$\begin{array}{\|l\|} \hline \text { 0026h to } \\ 002 \mathrm{Fh} \end{array}$
d084	Trip info 4		-	$\begin{aligned} & \text { 0030h to } \\ & \text { 0039h } \end{aligned}$
d085	Trip info 5		-	$\begin{aligned} & \text { 003Ah to } \\ & \text { 0043h } \end{aligned}$
d086	Trip info 6		-	$\begin{array}{\|l\|} \hline \text { 0044h to } \\ 004 \mathrm{Ch} \end{array}$
d090	Warning monitor	Warning code	-	004Eh
d102	DC voltage monitoring (across P and N)	0 to 10000	0.1 [V]	1026h
d103	BRD load factor monitoring	0 to 1000	0.1 [\%]	1027h
d104	Electronic thermal overload monitoring	0 to 1000	0.1 [\%]	1028h

4.2 Parameter group A

Function code	Function name	Monitoring and setting items	Units	Run mode edit	Modbus Register N°	Default
A001	Frequency source	0 (keypad potentiometer), 1 (control circuit terminal block), 2 (digital operator), 3 (Modbus), 4 (option), 6 (pulse train input), 7 (easy sequence), 10 (operation function result)	-	\times	1201h	01
A002	Run command source (*)	$\begin{aligned} & 1 \text { (control circuit terminal block), } 2 \text { (digital operator), } 3 \\ & \text { (Modbus), } 4 \text { (option) } \end{aligned}$	-	\times	1202h	01
A003	Base frequency	300 to "maximum frequency"	0.1 [Hz]	x	1203h	50.0
A004	Maximum frequency	300 to 4000 (10000)	0.1 [Hz]	x	1204h	50.0
A005	[AT] selection	0 (switching between O and OI terminals), 2 (switching between O terminal and keypad potentiometer), 3 (switching between OI terminal and keypad potentiometer)	-	\times	1205h	00
A011 (32-bits)	[O] input active range start frequency	0 to 40000(100000)	0.01 [Hz]	\times	120Bh	0.00
					120Ch	
A012 (32-bits)	[O] input active range end frequency	0 to 40000(100000)	0.01 [Hz]	\times	120Dh	0.00
					120Eh	
A013	[O] input active range start voltage	0 to "[O]-[L] input active range end voltage"	1 [\%]	x	120Fh	0
A014	[O] input active range end voltage	"[O]-[L] input active range start voltage" to 100	1 [\%]	\times	1210h	100
A015	[O] input start frequency select	00 (external start frequency), $01(0 \mathrm{~Hz}$)	-	x	1211h	01
A016	Analog input filter.	1 to 30 or 31 (500 ms filter $\pm 0.1 \mathrm{~Hz}$ with hysteresis)	1	\times	1212h	8
A017	EzSQ selection	00 (disabling), 01 (PRG terminal) , 02 (Always)	-	\times	1213h	00
A019	Multi speed operation selection	00 (binary), 01 (bit)	-	\times	1215h	00
A020 (32-bits)	Multi-speed freq. 0	0 or "start frequency" to "maximum frequency"	0.01 [Hz]	\checkmark	1216h	6.00
					1217h	
A021 (32-bits)	Multi-speed freq. 1	0 or "start frequency" to "maximum frequency"	0.01 [Hz]	\checkmark	1218h	0.00
					1219h	

Function code	Function name	Monitoring and setting items	Units	Run mode edit	Modbus Register $\underset{\mathrm{N}^{0}}{\text { Register }}$	Default
A022 (32-bits)	Multi-speed freq. 2	0 or "start frequency" to "maximum frequency"	0.01 [Hz]	\checkmark	121Ah	0.00
					121Bh	
A023 (32-bits)	Multi-speed freq. 3	0 or "start frequency" to "maximum frequency"	0.01 [Hz]	\checkmark	121Ch	0.00
					121Dh	
A024 (32-bits)	Multi-speed freq. 4	0 or "start frequency" to "maximum frequency"	0.01 [Hz]	\checkmark	121Eh	0.00
					121Fh	
A025 (32-bits)	Multi-speed freq. 5	0 or "start frequency" to "maximum frequency"	0.01 [Hz]	\checkmark	1220h	0.00
					1221h	
A026 (32-bits)	Multi-speed freq. 6	0 or "start frequency" to "maximum frequency"	0.01 [Hz]	\checkmark	1222h	0.00
					1223h	
A027 (32-bits)	Multi-speed freq. 7	0 or "start frequency" to "maximum frequency"	0.01 [Hz]	\checkmark	1224h	0.00
					1225h	
A028 (32-bits)	Multi-speed freq. 8	0 or "start frequency" to "maximum frequency"	0.01 [Hz]	\checkmark	1226h	0.00
					1227h	
A029 (32-bits)	Multi-speed freq. 9	0 or "start frequency" to "maximum frequency"	0.01 [Hz]	\checkmark	1228h	0.00
					1229h	
A030 (32-bits)	Multi-speed freq. 10	0 or "start frequency" to "maximum frequency"	0.01 [Hz]	\checkmark	122Ah	0.00
					122Bh	
A031 (32-bits)	Multi-speed freq. 11	0 or "start frequency" to "maximum frequency"	0.01 [Hz]	\checkmark	122Ch	0.00
					122Dh	
A032 (32-bits)	Multi-speed freq. 12	0 or "start frequency" to "maximum frequency"	0.01 [Hz]	\checkmark	122Eh	0.00
					122Fh	
A033 (32-bits)	Multi-speed freq. 13	0 or "start frequency" to "maximum frequency"	0.01 [Hz]	\checkmark	1230h	0.00
					1231h	
A034 (32-bits)	Multi-speed freq. 14	0 or "start frequency" to "maximum frequency"	0.01 [Hz]	\checkmark	1232h	0.00
					1233h	
A035 (32-bits)	Multi-speed freq. 15	0 or "start frequency" to "maximum frequency"	0.01 [Hz]	\checkmark	1234h	0.00
					1235h	
A038	Jog frequency	0.0, "Start frequency" to 999(10000)	0.01 [Hz]	\checkmark	1238h	6.00
A039	Jog stop mode	0 (free-running after jogging stops [disabled during operation]) 1 (deceleration and stop after jogging stops [disabled during operation]) 2 (DC braking after jogging stops [disabled during operation]) 3 (free-running after jogging stops [enabled during operation]) 4 (deceleration and stop after jogging stops [enabled during operation]) 5 (DC braking after jogging stops [enabled during operation])	-	\times	1239h	04
A041	Torque boost method selection	00 (manual torque boost), 01 (automatic torque boost)	-	\times	123Bh	00
A042	Manual torque boost value	0 to 200	0.1 [\%]	\checkmark	123Ch	1.0
A043	Manual torque boost frequency	0 to 500	0.1 [\%]	\checkmark	123Dh	5.0
A044	V/F characteristic curve selection, 1st motor	$00(\mathrm{VC}), 01(\mathrm{VP}), 02$ (free V/f), 03 (sensorless vector control),	-	\times	123Eh	00
A045	V/f gain	20 to 100	1 [\%]	\checkmark	123Fh	100
A046	Voltage compensation gain setting for automatic torque boost, 1 st motor	0 to 255	1 [\%]	\checkmark	1240h	100
A047	Slippage compensation gain setting for automatic torque boost, 1 st motor	0 to 255	1 [\%]	\checkmark	1241h	100
A051	DC braking enable	00 (disabling), 01 (enabling), 02 (output freq < [A052])	-	\times	1245h	00
A052	DC braking frequency	0 to 6000	0.01 [Hz]	\times	1246h	0.50
A053	DC braking wait time	0 to 50	0.1 [sec.]	\times	1247h	0.0
A054	DC braking force during deceleration	0 to 100	1 [\%]	\times	1248h	50
A055	DC braking time for deceleration	0 to 600	0.1 [sec.]	\times	1249h	0.5
A056	DC braking/edge or level detection for [DB] input	00 (edge operation), 01 (level operation)	-	\times	124Ah	01
A057	DC braking force for starting	0 to 100	1 [\%]	\times	124Bh	0
A058	DC braking time for starting	0 to 600	0.1 [sec.]	\times	124Ch	0.0
A059	DC braking carrier frequency setting	20 to 150	0.1 [kHz]	\times	124Dh	5.0
A061 (32-bits)	Frequency upper limit	0 or "maximum frequency limit" to "maximum fre-quency"	0.01 [Hz]	\times	124Fh	0.00
					1250h	
A062 (32-bits)	Frequency lower limit	0 or "maximum frequency limit" to "maximum fre-quency"	0.01 [Hz]	\times	1251h	0.00
					1252h	
A063 (32-bits)	Jump freq. (center) 1	0 to 40000(100000)	0.01 [Hz]	\times	1253h	0.00
					1254h	
A064	Jump freq. width (hysteresis) 1	0 to 1000(10000)	0.01 [Hz]	\times	1255h	0.50
A065 (32-bits)	Jump freq. (center) 2	0 to 40000(100000)	0.01 [Hz]	\times	1256h	0.00
					1257h	
A066	Jump freq. width (hysteresis) 2	0 to 1000(10000)	0.01 [Hz]	\times	1258h	0.50
A067 (32-bits)	Jump freq. (center) 3	0 to 40000(100000)	0.01 [Hz]	\times	1259h	0.00
					125Ah	
A068	Jump freq. width (hysteresis) 3	0 to 1000(10000)	0.01 [Hz]	\times	125Bh	0.50
A069 (32-bits)	Acceleration hold frequency	0 to 40000	0.01 [Hz]	\times	125Ch	0.00
					125Dh	
A070	Acceleration hold time	0 to 600	0.1 [sec.]	\times	125Eh	0.0

Vilitvil
MX2 Quick Start Guide

Function code	Function name	Monitoring and setting items	Units	Run mode edit	Modbus Register N°	Default
A071	PID Function Enable	00 (disabling), 01 (enabling), 02 (enabling inverted-data output)	-	*	125Fh	00
A072	PID proportional gain	0 to 2500	0.10	\checkmark	1260h	1.00
A073	PID integral time constant	0 to 36000	0.1 [sec.]	\checkmark	1261h	1.0
A074	PID derivative gain	0 to 10000	0.01 [sec.]	\checkmark	1262h	0.00
A075	PV scale conversion	1 to 9999	0.01	\times	1263h	1.00
A076	PV source	00 (input via OI), 01 (input via O), 02 (external communication), 03 (pulse train frequency input), 10 (operation result output)	-	\times	1264h	00
A077	Reverse PID	00 (disabling), 01 (enabling)	-	\times	1265h	00
A078	PID output limiter	0 to 1000	0.1 [\%]	\times	1266h	0.0
A079	PID feed forward selection	00 (disabled), 01(O input), 02 (OI input)	-	\times	1267h	00
A081	AVR function select	00 (always on), 01 (always off), 02 (off during deceleration)	-	\times	1269h	02
A082	AVR voltage select	200 V class: $0(200) / 1(215) / 2(220) / 3(230) / 4(240$ 400 V class: $5(380) / 6(400) / 7(415) / 8(440) / 9(460) / 10$ $(480))$	-	\times	126Ah	-
A083	AVR filter time constant	0.000 to 10.00	0.001[sec]	x	126Bh	0.300
A084	AVR deceleration gain	50 to 200	1[\%]	x	126Ch	100
A085	Energy-saving operation mode	00 (normal operation), 01 (energy-saving operation)	-	\times	126Dh	00
A086	Energy-saving mode tuning	0 to 1000	0.1 [\%]	\times	126Eh	50.0
A092 (32-bits)	Acceleration time (2)	1 to 360000	0.01 [sec.]	\checkmark	1274h	10.00
					1275h	
A093 (32-bits)	Deceleration time (2)	1 to 360000	0.01 [sec.]	\checkmark	1276h	10.00
					1277h	
A094	Select method to switch to Acc2/Dec2 profile	00 (switching by 2CH terminal), 01 (switching by setting) 02 (Forward and reverse)	-	\times	1278h	00
A095 (32-bits)	Acc1 to Acc2 frequency transition point	0 to 40000(100000)	$0.01[\mathrm{~Hz}]$	\times	1279h	0.00
					127Ah	
A096 (32-bits)	Dec1 to Dec2 frequency transition point	0 to 40000(100000)	0.01 [Hz]	\times	127Bh	0.00
					127Ch	
A097	Acceleration curve selection	$\begin{aligned} & \hline 0 \text { (linear), } 1 \text { (S curve), } 2 \text { (U curve), } \\ & 3 \text { (inverted-U curve), } 4 \text { (EL-S curve) } \end{aligned}$	-	\times	127Dh	01
A098	Deceleration curve setting	$\begin{aligned} & \hline 0 \text { (linear), } 1 \text { (S curve), } 2 \text { (U curve), } \\ & 3 \text { (inverted-U curve), } 4 \text { (EL-S curve) } \end{aligned}$	-	\times	127Eh	01
A101 (32-bits)	[OI] input active range start frequency	0 to 40000(100000)	0.01 [Hz]	\times	1281h	0.00
					1282h	
A102 (32-bits)	[OI] input active range end frequency	0 to 40000(100000)	0.01 [Hz]	\times	1283h	0.00
					1284h	
A103	[OI] input active range start current	0 to "[OI]-[L] input active range end current"	1 [\%]	\times	1285h	20
A104	[OI] input active range end current	"[OI]-[L] input active range start current" to 100	1 [\%]	x	1286h	100
A105	[OI] input start frequency select	00 (external start frequency), 01 (0 Hz)	-	\times	1287h	00
A131	Acceleration curve constant	$\begin{aligned} & \hline \text { (smallest swelling) to } 10 \\ & \text { largest swelling) } \\ & \hline \end{aligned}$	-	\times	12A5h	2
A132	Deceleration curve constant	1 (smallest swelling) to 10 (largest swelling)	-	\times	12A6h	2
A141	Operation-target frequency selection 1	00 (digital operator), 01 (keypad potentiometer), 02 (input via O), 03 (input via OI), 04 (external communication), 05 (option), 07 (pulse train frequency input)	-	\times	12AFh	02
A142	Operation-target frequency selection 2	00 (digital operator), 01 (keypad potentiometer), 02 (input via O), 03 (input via OI), 04 (external communication), 05 (option), 07 (pulse train frequency input)	-	\times	12B0h	03
A143	Operator selection	00 (addition: A141 + A142), 01 (subtraction: A141 A142), 02 (multiplication: A141 x A142)	-	\times	12B1h	00
A145 (32-bits)	Frequency to be added	0 to 40000(100000)	0.01 [Hz]	\times	12B3h	0.00
					12B4h	
A146	Sign of the frequency to be added	00 (frequency command + A145), 01 (frequency com-mand-A145)	-	\times	12B5h	00
A150	EL-S-curve acceleration/deceleration ratio 1	0 to 50	1 [\%]	\times	12B9h	10
A151	EL-S-curve acceleration/deceleration ratio 2	0 to 50	1 [\%]	\times	12BAh	10
A152	EL-S-curve deceleration/deceleration ratio 1	0 to 50	1 [\%]	\times	12BBh	10
A153	EL-S-curve deceleration/deceleration ratio 2	0 to 50	1 [\%]	\times	12BCh	10
A154 (32-bits)	Deceleration hold frequency	0~40000(100000)	0.01 [Hz]	\times	12BDh	0.00
					12BEh	
A155	Deceleration hold time	0~600	0.1 [sec.]	\times	12BFh	0.0
A156 (32-bits)	PID sleep function triggering level	0~40000(100000)	0.01 [Hz]	\times	12C0h	0.00
					12C1h	
A157	PID sleep function action delay time	0~255	0.1 [sec.]	\times	12C2h	0.0
A161 (32-bits)	[VR] input active range start frequency	0~40000(100000)	$0.01[\mathrm{~Hz}]$	\times	12C6h	0.00
					12C7h	
A162 (32-bits)	[VR] input active range end frequency	0~40000(100000)	0.01 [Hz]	\times	12C8h	0.00
					12C9h	
A163	[VR] input active range start \%	0~100	1 [\%]	\times	12CAh	0
A164	[VR] input active range end \%	0~100	1 [\%]	\times	12CBh	100
A165	[VR] input start freguencyselect	00(start frequency A161) / 01(0Hz)	-	\times	12 CCh	01

4.3 Parameter group B

Function code	Function name	Monitoring and setting items	Units	Run mode edit	$\begin{gathered} \text { Modbus } \\ \text { Register } \\ \text { No. } \end{gathered}$	Default
b001	Restart mode on power failure/ under-voltage trip	00 (tripping), 01 (starting with 0 Hz), 02 (starting with matching frequency), 03 (tripping after deceleration and stopping with matching frequency), 04 (restarting with active matching frequency)	-	\times	1301h	00
b002	Allowable under-voltage power failure time	3 to 250	0.1 [sec.]	\times	1302h	1.0
b003	Retry wait time before motor restart	3 to 1000	0.1 [sec.]	\times	1303h	1.0
b004	Instantaneous power failure/under-voltage trip alarm enable	00 (disabling), 01 (enabling), 02 (disabling during stopping and decelerating to stop)	-	\times	1304h	00
b005	Number of restarts on power failure/under-voltage trip events	0 (16 times), 1 (unlimited)	-	\times	1305h	00
b007 (32-bits)	Restart frequency threshold	0 to 40000	0.01 [Hz]	\times	1307h	0.00
					1308h	
b008	Restart mode on over voltage / over current	00 (tripping), 01 (starting with 0 Hz), 02 (starting with matching frequency), 03 (tripping after deceleration and stopping with matching frequency), 04 (restarting with active matching frequency)	-	\times	1309h	00
b010	Number of retry on over voltage / over current	1 to 3	1 [time]	\times	130Bh	3
b011	Retry wait time on over voltage / over current	3 to 1000	0.1 [sec.]	\times	130Ch	1.0
b012	Level of electronic thermal	200 to 1000	0.1 [\%]	\times	130Dh	-
b013	Electronic thermal characteristic	00 (reduced-torque characteristic), 01 (constant-torque characteristic), 02 (free setting)	-	\times	130Eh	01
b015	Free setting, electronic thermal frequency (1)	0 to 400	1 [Hz]	\times	1310h	0
b016	Free setting, electronic thermal current (1)	0 to Rated current	0.1 [A]	\times	1311h	0.00
b017	Free setting, electronic thermal frequency (2)	0 to 400	1 [Hz]	\times	1312h	0
b018	Free setting, electronic thermal current (2)	0 to Rated current	0.1 [A]	\times	1313h	0.00
b019	Free setting, electronic thermal frequency (3)	0 to 400	1 [Hz]	\times	1314h	0
b020	Free setting, electronic thermal current (3)	0 to Rated current	0.1 [A]	*	1315h	0.00
b021	Overload restriction operation mode	00 (disabling), 01 (enabling during acceleration and constant-speed operation), 02 (enabling during con-stant-speed operation), 03 (enabling during acceleration and constant-speed operation [speed increase at regeneration])	-	\times	1316h	01
b022	Overload restriction level	200 to 2000	0.1 [\%]	\times	1317h	-
b023	Deceleration rate at overload restriction	1 to 30000	0.1 [sec.]	\times	1318h	1.0
b024	Overload restriction operation mode (2)	00 (disabling), 01 (enabling during acceleration and constant-speed operation), 02 (enabling during con-stant-speed operation), 03 (enabling during acceleration and constant-speed operation [speed increase at regeneration])	-	\times	1319h	01
b025	Overload restriction level 2	200 to 2000	0.1 [\%]	\times	131Ah	-
b026	Deceleration rate at overload restriction (2)	1 to 30000	0.1 [sec.]	\times	131Bh	1.0
b027	Overcurrent suppression enable	00 (disabling), 01 (enabling)	-	\times	131Ch	00
b028	Current level of active freq. matching	100 to 2000	0.1 [\%]	\times	131Dh	-
b029	Deceleration rate of active freq. matching	1 to 30000	0.1 [sec.]	\times	131Eh	0.5
b030	Start freq. of active frequency matching	00 (frequency at the last shutoff), 01 (maximum frequency), 02 (set frequency)	-	\times	131Fh	00
b031	Software lock mode selection	00 (disabling change of data other than "b031" when SFT is on), 01 (disabling change of data other than "b031" and frequency settings when SFT is on), 02 (disabling change of data other than "b031"), 03 (disabling change of data other than " b 031 " and frequency settings), 10 (enabling data changes during operation)	-	\times	1320h	01
b033	Motor cable length parameter	5 to 20	-	x	1322h	10
b034 (32-bits)	Run/power-on warning time	0 to 65535	1 [10h]	\times	1323h	0
					1324h	
b035	Rotation direction restriction	00(Enable for both dir)/ 01 (Enable for forward only)/ 02 (Enable for reverse only)	-	\times	1325h	00
b036	Reduced voltage start selection	0 (minimum reduced voltage start time) to 255 (maximum reduced voltage start time)	-	\times	1326h	2
b037	Function code display restriction	00 (full display), 01 (function-specific display), 02 (user setting), 03 (data comparison display), 04 (basicdisplay),05(monitor display)	-	\times	1327h	00
b038	Initial display selection	001-060	-	\times	1328h	001
b039	Automatic user parameter registration	00 (disabling), 01 (enabling)	-	\times	1329h	00
b040	Torque limit selection	00 (quadrant-specific setting), 01 (switching by terminal), 02 (analog input)	-	\times	132Ah	00
b041	Torque limit 1 (fwd-power in 4-quadrant mode)	0 to 200/255 (no)	1 [\%]	\times	132Bh	200
b042	Torque limit 2 (rev/regen. in 4-quadrant mode)	0 to 200/255 (no)	1 [\%]	\times	132Ch	200
b043	Torque limit 3 (rev/power in 4-quadrant mode)	0 to 200/255 (no)	1 [\%]	\times	132Dh	200
b044	Torque limit 4 (fwd/regen. in 4-quadrant mode)	0 to 200/255 (no)	1 [\%]	\times	132Eh	200
b045	Torque limit LADSTOP enable	00 (disabling), 01 (enabling)	-	\times	132Fh	00
b046	Reverse Run protection enable	00 (disabling), 01 (enabling)	-	\times	1330h	00
b049	Dual Rating Selection	00(CT mode)/01(VT mode)	-	\times	1333h	00
b050	Controlled deceleration on power loss	00 (disabling), 01 (enabling), 02 (nonstop operation at momentary power failure (no restoration)) 03 (nonstop operation at momentary power failure (restoration to be done))	-	\times	1334h	00
b051	DC bus voltage trigger level of ctrl. decel.	0 to 10000	0.1 [V]	\times	1335h	220.0
b052	Over-voltage threshold of ctrrl. decel.	0 to 10000	0.1 [V]	x	1336h	360.0
b053 (32-bits)	Deceleration time of ctrl. decel.	0.01 to 36000	0.01 [sec.]	\times	1337h	1.00
					1338h	

VIIITVII
MX2 Quick Start Guide

Function code	Function name	Monitoring and setting items	Units	Run mode edit	Modbus Register No.	Default
b054	Initial freq. drop of ctrl. decel.	0 to 1000	0.01 [Hz]	x	1339h	0.00
b060	Maximum-limit level of window comparators O	0. to 100. (lower limit : b061 + b062 *2) (\%)	1 [\%]	\times	133Fh	100
b061	Minimum-limit level of window comparators O	0. to 100. (lower limit : b060-b062*2) (\%)	1 [\%]	\checkmark	1340h	0
b062	Hysteresis width of window comparators O	0. to 10. (lower limit : b061-b062 / 2) (\%)	1 [\%]	\checkmark	1341h	0
b063	Maximum-limit level of window comparators OI	0. to 100. (lower limit : b064 + b066 * 2) (\%)	1 [\%]	\checkmark	1342h	100
b064	Minimum-limit level of window comparators OI	0. to 100. (lower limit : b063-b066 ${ }^{\text {2 }}$) (\%)	1 [\%]	\checkmark	1343h	0
b065	Hysteresis width of window comparators OI	0. to 10. (lower limit : b063-b064 / 2) (\%)	1 [\%]	\checkmark	1344h	0
b070	Operation level at O disconnection	0. to 100. (\%) or "no" (ignore)	1 [\%]	\times	1349h	no
b071	Operation level at OI disconnection	0. to 100. (\%) or "no" (ignore)	1 [\%]	\times	134Ah	no
b075	Ambient temperature	-10 to 50	1 [?]	\checkmark	134Eh	40
b078	Cumulative input power data clearance	Clearance by setting "1"	-	\checkmark	1351h	00
b079	Watt-hour display gain	1 to 1000	1	\checkmark	1352h	1
b082	Start frequency	10 to 999	0.01 [Hz]	\times	1355h	0.50
b083	Carrier frequency	20 to 150	0.1 [kHz]	\times	1356h	10.0
b084	Initialization mode (parameters or trip history)	00 (disable), 01 (clearing the trip history), 02 (initializing the data), 03 (clearing the trip history and initializing the data), 04 (clearing the trip history and initializing the data and EzSQ program)	-	\times	1357h	00
b085	Initial value code	00 (JPN/US), 01 (EU)	-	\times	1358h	01
b086	Frequency scaling conversion factor	1 to 9999	0.01	\times	1359h	1.00
b087	STOP key enable	00 (enabling), 01 (disabling), 02 (disabling only stop)	-	x	135Ah	00
b088	Restart mode after FRS	0 (starting with 0 Hz), 1 (starting with matching frequency), 2 (starting with active matching frequency)	-	\times	135Bh	00
b089	Automatic carrier frequency reduction	0(disabling)/1(enabling(output current controlled))/ 2(enabling(fin temperature controlled))	-	\times	135Ch	01
b090	Dynamic braking usage ratio	0 to 1000	0.1 [\%]	\times	135Dh	0.0
b091	Stop mode selection	00 (deceleration until stop), 01 (free-run stop)	-	\times	135Eh	00
b092	Cooling fan control	01 (always operating the fan), 01 (operating the fan only during inverter operation [including 5 minutes after power-on]), 02 (operating by temperature)	-	\times	135Fh	01
b093	Clear elapsed time of cooling fan	0(count)/1(clear)	-	\times	1360h	00
b094	Initialization target data	0 to 3	-	x	1361h	00
b095	Dynamic braking control	0 (disabling), 1 (enabling [disabling while the motor is stopped]), 2 (enabling [enabling also while the motor is stopped])		\times	1362h	00
b096	Dynamic braking activation level	330 to 380, 660 to 760	1. [V]	x	1363h	360
b097	BRD resistor value	Min. Resitance to 600.0	0.1 [W]	\times	1364h	100.0
b100	Free-setting V/f frequency (1)	0. to "free-setting V/f frequency (2)"	1 [Hz]	x	1367h	0
b101	Free-setting V/f voltage (1)	0. to 8000	0.1 [V]	\times	1368h	0.0
b102	Free-setting V/f frequency (2)	0. to "free-setting V/f frequency (3)"	1 [Hz]	x	1369h	0
b103	Free-setting V/f voltage (2)	0. to 8000	0.1 [V]	\times	136Ah	0.0
b104	Free-setting V/f frequency (3)	0. to "free-setting V/f frequency (4)"	1 [Hz]	x	136Bh	0
b105	Free-setting V/f voltage (3)	0. to 8000	0.1 [V]	\times	136Ch	0.0
b106	Free-setting V/f frequency (4)	0. to "free-setting V/f frequency (5)"	1 [Hz]	\times	136Dh	0
b107	Free-setting V/f voltage (4)	0. to 8000	0.1 [V]	\times	136Eh	0.0
b108	Free-setting V/f frequency (5)	0. to "free-setting V/ff frequency (6)"	1 [Hz]	\times	136Fh	0
b109	Free-setting V/f voltage (5)	0. to 8000	0.1 [V]	\times	1370h	0.0
b110	Free-setting V/f frequency (6)	0. to "free-setting V/f frequency (7)"	1 [Hz]	\times	1371h	0
b111	Free-setting V/f voltage (6)	0. to 8000	0.1 [V]	\times	1372h	0.0
b112	Free-setting V/f frequency (7)	0. to 400.	1 [Hz]	\times	1373h	0
b113	Free-setting V/f voltage (7)	0. to 8000	0.1 [V]	\times	1374h	0.0
b120	Brake Control Enable	00 (disabling), 01 (enabling)	-	\times	137Bh	00
b121	Brake Wait Time for Release	0 to 500	0.01 [sec.]	x	137Ch	0.00
b122	Brake Wait Time for Acceleration	0 to 500	0.01 [sec.]	\times	137Dh	0.00
b123	Brake Wait Time for Stopping	0 to 500	0.01 [sec.]	x	137Eh	0.00
b124	Brake Wait Time for Confirmation	0 to 500	0.01 [sec.]	\times	137Fh	0.00
b125	Brake Release Frequency	0 to 40000	0.01 [Hz]	\times	1380h	0.00
b126	Brake Release Current	0 to 2000	0.1 [\%]	\times	1381h	-
b127	Braking frequency	0 to 40000	$0.01[\mathrm{~Hz}]$	\times	1382h	0.00
b130	Deceleration overvoltage suppression enable	00 (disabling), 01 (enabling), 02 (enabling with acceleration)	-	\times	1385h	00
b131	Decel. overvolt. suppress level	$\begin{aligned} & 200 \mathrm{~V} \text { class: } 330 \text { to } 390(\mathrm{~V}) \\ & 400 \mathrm{~V} \text { class: } 660 \text { to } 780(\mathrm{~V}) \end{aligned}$	1 [V]	\times	1386h	380
b132	Decel. overvolt. suppress const.	10 to 3000	0.01 [sec.]	\times	1387h	1.00
b133	Decel. overvolt. suppress propotional gain	0 to 500	0.01	\checkmark	1388h	0.20
b134	Decel. overvolt. suppress Integral time	0 to 1500	0.1 [sec.]	\checkmark	1389h	1.0
b145	GS input mode	00 (non Trip) /01 (Trip)	-	\times	1394h	00
b150	Display ex.operator connected	001 to 060	-	x	139Ah	001
b160	1st parameter of Dual Monitor	001 to 030	-	\times	13A3h	001
b161	2nd parameter of Dual Monitor	001 to 030	-	\times	13A4h	002
b163	Freq. set in monitoring	00 (disabling), 01 (enabling),	-	\checkmark	13A6h	00
b164	Automatic return to the initial display	00 (disabling), 01 (enabling),	-	\checkmark	13A7h	00
b165	Ex. operator com. loss action	00 (tripping), 01 (tripping after decelerating and stopping the motor), 02 (ignoring errors), 03 (stopping the motor after free-running), 04 (decelerating and stopping the motor)	-	\checkmark	13A8h	02
b166	Data Read/Write select	00 (Read/Write OK), 01 (Protected)	-	x	13A9h	00
b171	Inverter mode selection	00 (disabling), 01 (IM mode), 02 (High Freq. mode), 03 (PM mode)	-	\times	13AEh	00
b180	Initialization trigger	00 (disabling), 01 (enabling),		\times	13B7h	00

4.4 Parameter group C

Function code	Function name	Monitoring and setting items	Units	Run mode edit	Modbus Register No.	Default
C001	Input [1] function	Check I/O optiosn on page	-	\times	1401h	00 (FW)
C002	Input [2] function		-	\times	1402h	01 (RV)
C003	Input [3] function		-	\times	1403h	12 (EXT)
C004	Input [4] function		-	x	1404h	18 (RS)
C005	Input [5] function		-	\times	1405h	02 (CF1)
C006	Input [6] function		-	\times	1406h	03 (CF2)
C007	Input [7] function		-	\times	1407h	06 (JG)
C011	Input [1] active state	0 (NO), 1 (NC)	-	\times	140Bh	00
C012	Input [2] active state	0 (NO), 1 (NC)	-	\times	140Ch	00
C013	Input [3] active state	0 (NO), 1 (NC)	-	\times	140Dh	00
C014	Input [4] active state	0 (NO), 1 (NC)	-	\times	140Eh	00
C015	Input [5] active state	0 (NO), 1 (NC)	-	\times	140Fh	00
C016	Input [6] active state	0 (NO), 1 (NC)	-	\times	1410h	00
C017	Input [7] active state	0 (NO), 1 (NC)	-	\times	1411h	00
C021	Output [11] function	Check I/O options on page	-	\times	1415h	00(RUN)
C022	Output [12] function		-	\times	1416h	01(FA1)
C026	Alarm relay function		-	\times	141Ah	05 (AL)
C027	[EO] terminal selection	Check analog and pulse output on page	-	\times	141Bh	07(LAD)
C028	[AM] terminal selection	Check analog and pulse output on page	-	\times	141Ch	07(LAD)
C030	Digital current monitor reference value	200 to 2000	0.1 [\%]		141Eh	-
C031	Output [11] active state	0 (NO), 1 (NC)	-	\times	141Fh	00
C032	Output [12] active state	0 (NO), 1 (NC)	-	\times	1420h	00
C036	Alarm relay active state	0 (NO), 1 (NC)	-	${ }^{x}$	1424h	01
C038	Output mode of low current detection	0 (output during acceleration/deceleration and con-stant-speed operation), 1 (output only during constantspeed operation)	-	\times	1426h	01
C039	Low current detection level	0 to 2000	0.1 [\%]	x	1427h	-
C040	Overload signal output mode	00 (output during acceleration/deceleration and con-stant-speed operation), 01 (output only during con-stant-speed operation)	-	\times	1428h	01
C041	Overload warning level	0 to 2000	0.1 [\%]	\times	1429h	-
C042 (high)	Frequency arrival setting for accel.	0 to 40000	0.01 [Hz]	\times	142Ah	0.00
C042 (low)					142Bh	
C043 (high)	Frequency arrival setting for decel.	0 to 40000	0.01 [Hz]	\times	142Ch	0.00
C043 (low)					142Dh	
C044	PID deviation level	0 to 1000	0.1 [\%]	\times	142Eh	3.0
C045 (high)	Frequency arrival setting 2 for accel.	0 to 40000	0.01 [Hz]	\times	142Fh	0.00
C045 (low)					1430h	
C046 (high)	Frequency arrival setting 2 for decel.	0 to 40000	0.01 [Hz]	\times	1431h	0.00
C046 (low)					1432h	
C047	Pulse train input scale conversion for EO output	0.01-99.99	-	\times	1433 h	1.00
C052	Maximum PID feedback data	0 to 1000	0.1 [\%]	\times	1438h	100.0
C053	Minimum PID feedback data	0 to 1000	0.1 [\%]	\times	1439h	0.0
C054	Over-torque/under-torqueselection	00(Over torque)/01(under torque)	-	\times	143Ah	00
C055	Over-torque (forward-driving) level setting	0 to 200	1 [\%]	\times	143Bh	100
C056	Over-torque (reverse regenerating) level setting	0 to 200	1 [\%]	\times	143Ch	100
C057	Over-torque (reverse driving) level setting	0 to 200	1 [\%]	\times	143Dh	100
C058	Over-torque (forward regenerating) level setting	0 to 200	1 [\%]	\times	143Eh	100
C059	Signal output mode of Over/under torque	00 (output during acceleration/deceleration and con-stant-speed operation), 01 (output only during con-stant-speed operation)	-	\times	143Fh	01
C061	Electronic thermal warning level	0 to 100	1 [\%]	\times	1441h	90
C063	Zero speed detection level	0 to 10000	0.01 [Hz]	\times	1443h	0.00
C064	Heat sink overheat warning level	0 to 110	1 [?]	\times	1444h	100
C071	Communication speed	$\begin{aligned} & \text { 03(2400bps), 04(4800bps), 05(9600bps), 06(19.2kbps), } \\ & 07(38.4 \mathrm{kpps}), 08(57.6 \mathrm{kbps}), 09(76.8 \mathrm{kbps}), \\ & \text { 10(115.2kbps) } \end{aligned}$	-	\times	144Bh	05
C072	Modbus address	1. to 247 .	-	\times	144Ch	1
C074	Communication parity	$\begin{array}{\|l} \hline 00 \text { (no parity), } 01 \text { (even parity), } \\ 02 \text { (odd parity) } \end{array}$	-	\times	144Eh	00
C075	Communication stop bit	1 (1 bit), 2 (2 bits)	-	\times	144Fh	01
C076	Selection of the operation after communication error	00 (tripping), 01 (tripping after decelerating and stopping the motor), 02 (ignoring errors), 03 (stopping the motor after free-running), 4 (decelerating and stopping the motor)	-	\times	1450h	02
C077	Communication timeout limit	0 to 9999	0.01 [sec.]	\times	1451h	0.00
C078	Communication wait time	0 to 1000	1 [msec.]	\times	1452h	0
C081	[O] input span calibration	0 to 2000	0.1	\checkmark	1455h	100.0
C082	[OI] input span calibration	0 to 2000	0.1	\checkmark	1456h	100.0
C085	Thermistor input tuning	0 to 2000	0.1	\checkmark	1459h	100.0
C091	Debug mode enable	00/01	-	\checkmark	145Fh	00
C096	Communication selection	00 (Modbus-RTU) 01(EzCOM) 02 (EzCOM<administrator>)		\times	1464h	00
C098	EzCOM start adr. of master	1~8		\times	1466h	1
C099	EzCOM end adr. of master	1~8		\times	1467h	1
C100	EzCOM starting trigger	00(Input terminal), 01(Always)		\times	1468h	00
C101	Up/Down memory mode selection	00 (not storing the frequency data), 01 (storing the frequency data)	-	\times	1469h	00

VIIITVII
MX2 Quick Start Guide

Function code	Function name	Monitoring and setting items	Units	Run mode edit	Modbus Register No.	Default
C102	Reset mode selection	00 (resetting the trip when RS is on), 01 (resetting the trip when RS is off), 02 (enabling resetting only upon tripping [resetting when RS is on]), 03(resetting only trip)	-	\times	146Ah	00
C103	Restart mode after reset	00 (starting with 0 Hz), 01 (starting with matching frequency), 02 (restarting with active matching freq)	-	\times	146Bh	00
C104	UP/DWN clear mode	$00(0 \mathrm{~Hz}) / 01$ (EEPROM data)	-	\times	146Ch	00
C105	FM gain adjustment	50 to 200	1 [\%]	\checkmark	146Dh	100
C106	AM gain adjustment	50 to 200	1 [\%]	\checkmark	146Eh	100
C109	AM bias adjustment	0 to 100	1 [\%]	\checkmark	1471h	0
C111	Overload warning level 2	0 to 2000	0.1 [\%]	\checkmark	1473h	-
C130	Output [11] on-delay time	0 to 1000	0.1 [sec.]	\times	1486h	0.0
C131	Output [11] off-delay time	0 to 1000	0.1 [sec.]	x	1487h	0.0
C132	Output [12] on-delay time	0 to 1000	0.1 [sec.]	\times	1488h	0.0
C133	Output [12] off-delay time	0 to 1000	0.1 [sec.]	\times	1489h	0.0
C140	Output RY on-delay time	0 to 1000	0.1 [sec.]	\times	1490h	0.0
C141	Output RY off-delay time	0 to 1000	0.1 [sec.]	x	1491h	0.0
C142	Logic output 1 operand A	Same as the settings of C021 to C026 (except those of LOG1 to LOG6, OPO, no)	-	\times	1492h	00
C143	Logic output 1 operand B	Same as the settings of C021 to C026 (except those of LOG1 to LOG6, OPO, no)	-	\times	1493h	00
C144	Logical output 1 operator	0 (AND), 1 (OR), 2 (XOR)	-	\times	1494h	00
C145	Logic output 2 operand A	Same as the settings of C021 to C026 (except those of LOG1 to LOG6, OPO, no)	-	\times	1495h	00
C146	Logic output 2 operand B	Same as the settings of C021 to C026 (except those of LOG1 to LOG6, OPO, no)	-	\times	1496h	00
C147	Logical output 2 operator	00 (AND), 01 (OR), 02 (XOR)	-	\times	1497h	00
C148	Logic output 3 operand A	Same as the settings of C021 to C026 (except those of LOG1 to LOG6, OPO, no)	-	\times	1498h	00
C149	Logic output 3 operand B	Same as the settings of C021 to C026 (except those of LOG1 to LOG6, OPO, no)	-	\times	1499h	00
C150	Logical output 3 operator	00 (AND), 01 (OR), 02 (XOR)	-	\times	149Ah	00
C160	Input [1] response time	0 to 200	-	\times	14A4h	1
C161	Input [2] response time	0 to 200	-	\times	14A5h	1
C162	Input [3] response time	0 to 200	-	\times	14A6h	1
C163	Input [4] response time	0 to 200	-	\times	14A7h	1
C164	Input [5] response time	0 to 200	-	\times	14A8h	1
C165	Input [6] response time	0 to 200	-	\times	14A9h	1
C166	Input [7] response time	0 to 200	-	\times	14AAh	1
C169	Multistage speed/position determination time	0 to 200	-	\times	14ADh	0

4.5 Parameter group H

Function code	Function name	Monitoring and setting items	Units	Run mode edit	Modbus Register No.	Default
H001	Auto-tuning Setting	00 (disabling auto-tuning), 01 (auto-tuning without rotation), 02 (auto-tuning with rotation)	-	\times	1501h	00
H002	Motor data selection, 1st motor	00 (Standard motor data), 02 (auto-tuned data)	-	\times	1502h	00
H003	Motor capacity, 1st motor	00(0.1kW)-15 (18.5kW)	-	\times	1503h	-
H004	Motor poles setting, 1st motor	0 (2 poles), 1 (4 poles), 2 (6 poles), 3 (8 poles), 4 (10)	-	\times	1504h	4P
H005	Motor speed constant, 1st motor	1 to 1000	1[\%]	\checkmark	1506h	100
H006	Motor stabilization constant, 1st motor	0 to 255	1	\checkmark	1507h	100
H020	Motor constant R1, 1st motor	1 to 65530	$0.001[\Omega]$	\times	1516h	-
H021	Motor constant R2, 1st motor	1 to 65530	$0.001[\Omega]$	\times	1518h	-
H022	Motor constant L, 1st motor	1 to 65530	0.01 mH	\times	151Ah	-
H023	Motor constant Io	1 to 65530	0.01 [A]	\times	151Ch	-
H024(32-bits)	Motor constant J	1 to 9999000	0.001	\times	151Dh	-
					151Eh	
H030	Auto constant R1, 1st motor	1 to 65530	$0.001[\Omega]$	x	1525h	-
H031	Auto constant R2, 1st motor	1 to 65530	$0.001[\Omega]$	\times	1527h	-
H032	Auto constant L, 1st motor	1 to 65530	0.01 mH	x	1529h	-
H033	Auto constant Io, 1st motor	1 to 65530	0.01 [A]	\times	152Bh	-
H024(32-bits)	Auto constant J, 1st motor	1 to 9999000	0.001	\times	152Ch	-
					152Dh	
H050	Slip compensation P gain for V/f control with FB	0 to 10000	0.1	\checkmark	153Dh	0.20
H051	Slip compensation P gain for V/f control with FB	0 to 10000	1	\checkmark	153Eh	2
H102	PM motor code setting	00 (Standard motor data), 01(auto-tuned data)	-	x	1571h	00
H103	PM motor capacity	$\begin{aligned} & \text { 0.1/0.2/0.4/0.55/0.75/1.1/1.5/2.2/3.0/3.7/4.0/5.5/7.5/ } \\ & \text { 11.0/15.0/18.5 } \end{aligned}$	-	\times	1572h	-
H104	PM motor poles setting	$\begin{aligned} & 2(0) / 4(1) / 6(2) / 8(3) / 10(4) / 12(5) / 14(6) / 16(7) / 18(8) / \\ & 20(9) / 22(10) / 24(11) / 26(12) / 28(13) / 30(14) / 32(15) / \\ & 34(16) / 36(17) / 38(18) / 40(19) / 42(20) / 44(21) / 46(22) / \\ & 48(34) \text { pole } \end{aligned}$	-	\times	1573h	4P

Function code	Function name	Monitoring and setting items	Units	$\begin{gathered} \text { Run } \\ \text { mode } \\ \text { edit } \end{gathered}$	Modbus Register No．	Default
H105	PM motor rated current	Set a level between $\mathbf{2 0 \%}$ and $\mathbf{1 0 0 \%}$ for the rated inverter current	0.01 ［A］	\times	1574h	－
H106	PM motor constant R	0.001 to 65.535Ω	0.001 ［ Ω ］	\times	1575h	－
H107	PM motor constant Ld	0.01 to 655.35 mH	0.01 mH	\times	1576h	－
H108	PM motor constant Lq	0.01 to 655.35 mH	0.01 mH	\times	1577h	－
H109	PM motor constant Ke	0.0001 to $6.5535 \mathrm{Vpeak} /(\mathrm{rad} / \mathrm{s})$	$\begin{array}{\|l\|} \hline 0.0001 \\ \mathrm{~V} /(\mathrm{rad} / \mathrm{s}) \end{array}$	\times	1578h	－
H010（32－bits）	PM constant J	0．001－9999．000 kg／m ${ }^{2}$	$\begin{aligned} & 0.001 \mathrm{~kg} / \\ & \mathrm{m}^{2} \end{aligned}$	\times	1579h	－
H111	Auto constant R	0.001 to 65.535Ω	0.001 ［ Ω ］	\times	157Bh	－
H112	Auto constant Ld	0.01 to 655.35 mH	0.01 mH	\times	157Ch	－
H113	Auto constant Lq	0.01 to 655.35 mH	0.01 mH	\times	157Dh	－
H116	PM Speed Response	1 to 1000	－		1581h	100
H117	PM Starting Current	20.00 to 100．00\％	－	\times	1582h	70.00
H118	PM Starting Time	0.01 to 60.00 s	0.01 ［s］	\times	1583h	1.00
H119	PM Stabilization Constant	0 to 120\％	－	\checkmark	1584h	100
H121	PM Minimum Frequency	0．0 to 25．5\％	－	\checkmark	1586h	8.0
H122	PM No－Load Current	0.00 to 100．00\％	－	\checkmark	1587h	10.00
H123	PM Starting Method Select	00 （Normal ）， 01 （IMPE）	－	\times	1588h	00
H131	PM Initial Magnet Position Estimation 0 V Wait Times	0 to 255	－	\times	158Ah	10
H132	PM Initial Magnet Position Estimation Detect Wait Times	0 to 255	－	\times	158Bh	10
H133	PM Initial Magnet Position Estimation Detect Times	0 to 255	－	\times	158Ch	30
H134	PM Initial Magnet Position Estimation Voltage Gain	0 to 255	－	\times	158Dh	100

4．6 Parameter group P

Function code	Function name	Monitoring and setting items	Units	Run mode edit	Modbus Register	Default
P001	Operation mode on expansion card 1 error	00 （tripping）， 01 （continuing operation）	－	x	1601h	00
P003	［EA］terminal selection	00 （Speed reference，incl．PID） 01 （Encoder feedback） 02 （Extended terminal for EzSQ）		\times	1603h	00
P004	Pulse train input mode for feedback	00 （Single－phase pulse［EA］） 01 （2－phase pulse［ 90° difference］ 1 （［EA］and［EB］）） 02 （2－phase pulse $\left[90^{\circ}\right.$ difference］ 2 （［EA］and［EB］）） 03 （Single－phase pulse［EA］and direction signal［EB］）		＊	1604h	00
P011	Encoder pulse－per－revolution（PPR）setting	32 to 1024	1	x	160Bh	512
P012	Simple positioning selection	00 （simple positioning deactivated） 02 （simple positioning activated）	－	\times	160Ch	00
P015	Creep speed	＂start frequency＂to 1000	0.01 ［Hz］	\times	160Fh	5.00
P026	Over－speed error detection level	0 to 1500	0.1 ［\％］	\times	161Ah	115.0
P027	Speed deviation error detection level	0 to 12000	0.01 ［Hz］	\times	161Bh	10.00
P031	Accel／decel time input selection	00（digital operator）， 03 （easy sequence）	－	\times	161Fh	00
P033	Torque command input selection	00 （O terminal）， 01 （OI terminal）， 03 （digital operator）， 06 （Option）	－	\times	1621h	00
P034	Torque command setting	0 to 200	1 ［\％］	\checkmark	1622h	0
P036	Torque bias mode	00 （disabling the mode），01（digital operator），	－	\times	1624h	00
P037	Torque bias value	－200 to +200	1 ［\％］		1625h	0
P038	Torque bias polarity selection	00 （as indicated by the sign）， 01 （depending on the oper－ ation direction），05（Option）	－	\times	1626h	00
P039（32－bits）	Speed limit for torque－controlled operation（for－ ward rotation）	0 to 12000	0.01 ［Hz］	\times	$\begin{aligned} & \hline 1627 \mathrm{~h} \\ & \hline 1628 \mathrm{~h} \end{aligned}$	0.00
P040（32－bits）	Speed limit for torque－controlled operation（reverse rotation）	0 to 12000	0.01 ［Hz］	\times	$\begin{aligned} & \hline \text { 1629h } \\ & \hline \text { 162Ah } \end{aligned}$	0.00
P041	Speed／torque control switching time	0 to 1000	－	\times	162Bh	0
P044	Communication watchdog timer	0 to 9999	0.01 sec ．	x	162Eh	1.00
P045	Inverter action on communication error	00 （tripping）， 01 （tripping after decelerating and stop－ ping the motor）， 02 （ignoring errors）， 03 （stopping the motor after free－running）， 04 （decelerating and stop－ ping the motor）	－	\times	162Fh	00
P046	DeviceNet default connection path	0－7	－	x	1630h	1
P048	Inverter action on communication idle mode	00 （tripping）， 01 （tripping after decelerating and stop－ ping the motor）， 02 （ignoring errors）， 03 （stopping the motor after free－running）， 04 （decelerating and stop－ ping the motor）	－	\times	1632h	00
P049	Motor poles setting for RPM	0 （ 0 pole）， 1 （ 2 poles）， 2 （ 4 poles）， 3 （ 6 poles）， 4 （8 poles）， 5 （ 10 poles）， 6 （ 12 poles）， 7 （ 14 poles）， 8 （ 16 poles）， 9 （ 18 poles）， 10 （ 20 poles）， 11 （ 22 poles）， 12 （ 24 poles）， 13 （ 26 poles）， 14 （ 28 poles）， 15 （ 30 poles）， 16 （ 32 poles）， 17 （ 34 poles）， 18 （ 36 poles）， 19 （ 38 poles）	${ }^{-}$	\times	1633h	0
P055	Pulse train frequency scale	10 to 320 （input frequency corresponding to the allow－ able maximum frequency）	0.1 ［kHz］	\times	1639h	1.5
P056	Time constant of pulse train frequency filter	1 to 200	0.01 sec ．	\times	163Ah	0.10

VIIITVII
MX2 Quick Start Guide

Function code	Function name	Monitoring and setting items	Units	Run mode edit	Modbus Register No	Default
P057	Pulse train frequency bias	-100 to +100	1 [\%]	\times	163Bh	0
P058	Pulse train frequency limit	0 to 100	1 [\%]	\times	163Ch	100
P060 (32-bits)	Multistage position 0	P073 to P072	1	\checkmark	163Eh	0
					163Fh	
P061 (32-bits)	Multistage position 1	P073 to P072	1	\checkmark	1640h	0
					1641h	
P062 (32-bits)	Multistage position 2	P073 to P072	1	\checkmark	1642h	0
					1643h	
P063 (32-bits)	Multistage position 3	P073 to P072	1		1644h	0
					1645h	
P064 (32-bits)	Multistage position 4	P073 to P072	1		1646h	0
					1647h	
P065 (32-bits)	Multistage position 5	P073 to P072	1	\checkmark	1648h	0
					1649h	
P066 (32-bits)	Multistage position 6	P073 to P072	1	\checkmark	164Ah	0
					164Bh	
P067 (32-bits)	Multistage position 7	P073 to P072	1	\checkmark	164Ch	0
					164Dh	
P068	Homing mode selection	00(Low) / 01(High)	-	\checkmark	164Eh	00
P069	Homing direction	00(FW) / 01(RV)	-	\checkmark	164Fh	01
P070	Low-speed homing frequency	0 to 1000	-	\checkmark	1650h	5.00
P071	High-speed homing frequency	0 to 40000	-	\checkmark	1651h	5.00
P072 (32-bits)	Position range (forward)	0 to 268435455	1	\checkmark	1652h	$\begin{gathered} +26843 \\ 5455 \\ \hline \end{gathered}$
					1653h	
P073 (32-bits)	Position range (reverse)	-268435455 to 0	1	\checkmark	1654h	$\begin{gathered} -26843 \\ 5455 \end{gathered}$
					1655h	
P075	Positioning mode	00...With limitation 01...No limitation (fastest control)	$0.1 \text { [sec.] }$	\times	1657h	00
P077	Encoder disconnection timeout	0 to 100		\times	1659h	1.0
P100	Drive programing user parameter U (00)	0 to 65530	$\begin{array}{\|l\|} \hline 0.1[\mathrm{sec} .] \\ \hline 1 \end{array}$	\checkmark	1666h	
P101	Drive programing user parameter U (01)	0 to65530	1		1667h	0
P102	Drive programing user parameter U (02)	0 to 65530	1	\checkmark	1668h 0	
P103	Drive programing user parameter U (03)	0 to 65530	1	\checkmark	1669h	0
P104	Drive programing user parameter U(04)	0 to 65530	1	\checkmark	166Ah	0
P105	Drive programing user parameter U(05)	0 to 65530	1	\checkmark	166Bh	
P106	Drive programing user parameter $U(06)$	0 to 65530	1	\checkmark	166Ch	0
P107	Drive programing user parameter $\mathrm{U}(07)$	0 to 65530	1	\checkmark	166Dh	0
P108	Drive programing user parameter U (08)	0 to 65530	1	\checkmark	166Eh	0
P109	Drive programing user parameter U (09)	0 to 65530	1	\checkmark	166Fh	0
P110	Drive programing user parameter U (10)	0 to 65530	1	\checkmark	1670h	0
P111	Drive programing user parameter U (11)	0 to 65530	1	\checkmark	1671h	0
P112	Drive programing user parameter U (12)	0 to 65530	1	\checkmark	1672h	0
P113	Drive programing user parameter U (13)	0 to 65530	1	\checkmark	1673h	0
P114	Drive programing user parameter U (14)	0 to 65530	1	\checkmark	1674h	0
P115	Drive programing user parameter U(15)	0 to 65530	1	\checkmark	1675h	0
P116	Drive programing user parameter U (16)	0 to 65530	1	\checkmark	1676h	0
P117	Drive programing user parameter U (17)	0 to 65530	1	\checkmark	1677h	0
P118	Drive programing user parameter U (18)	0 to 65530	1	\checkmark	1678h	0
P119	Drive programing user parameter U (19)	0 to 65530	1	\checkmark	1679h	0
P120	Drive programing user parameter U (20)	0 to 65530	1	\checkmark	167Ah	0
P121	Drive programing user parameter U (21)	0 to 65530	1	\checkmark	167Bh	0
P122	Drive programing user parameter U (22)	0 to 65530	1	\checkmark	167Ch	0
P123	Drive programingQ user parameter U (23)	0 to 65530	1	\checkmark	167Dh	0
P124	Drive programing user parameter U (24)	0 to 65530	1	\checkmark	167Eh	0
P125	Drive programing user parameter U (25)	0 to 65530	1	\checkmark	167Fh	0
P126	Drive programing user parameter U (26)	0 to 65530		\checkmark	1680h	0
P127	Drive programing user parameter U (27)	0 to 65530		\checkmark	1681h	0
P128	Drive programing user parameter U (28)	0 to 65530	1	\checkmark	1682h	0
P129	Drive programing user parameter U (29)	0 to 65530	1	\checkmark	1683h	0
P130	Drive programing user parameter U (30)	0 to 65530	1	\checkmark	1684h	0
P131	Drive programing user parameter U (31)	0 to 65530	1	\checkmark	1685h	0
P140	EzCOM number of data	1 to 5	-	\checkmark	168Eh	5
P141	EzCOM destination 1 adderss	1 to 247	-	\checkmark	168Fh	1
P142	EzCOM destination 1 register	0000 to FFFF	-	\checkmark	1690h	0000
P143	EzCOM source 1 register	0000 to FFFF	-	\checkmark	1691h	0000
P144	EzCOM destination 2 adderss	1 to 247	-	\checkmark	1692h	2
P145	EzCOM destination 2 register	0000 to FFFF	-	\checkmark	1693h	0000
P146	EzCOM source 2 register	0000 to FFFF	-	\checkmark	1694h	0000
P147	EzCOM destination 3 adderss	1 to 247	-	\checkmark	1695h	3
P148	EzCOM destination 3 register	0000 to FFFF	-	\checkmark	1696h	0000
P149	EzCOM source 3 register	0000 to FFFF	-	\checkmark	1697h	0000
P150	EzCOM destination 4 adderss	1 to 247	-	\checkmark	1698h	4
P151	EzCOM destination 4 register	0000 to FFFF	-	\checkmark	1699h	0000
P152	EzCOM source 4 register	0000 to FFFF	-	\checkmark	169Ah	0000
P153	EzCOM destination 5 adderss	1 to 247	-	\checkmark	169Bh	5
P154	EzCOM destination 5 register	0000 to FFFF	-	\checkmark	169Ch	0000
P155	EzCOM source 5 register	0000 to FFFF	-	\checkmark	169Dh	0000
P160	Option I/F command register to write 1	0000 to FFFF	-	\checkmark	16A2h	0000

Function code	Function name	Monitoring and setting items	Units	Run mode edit	Modbus Register No	Default
P161	Option I/F command register to write 2	0000 to FFFF	-	\checkmark	16A3h	0000
P162	Option I/F command register to write 3	0000 to FFFF	-	\checkmark	16A4h	0000
P163	Option I/F command register to write 4	0000 to FFFF	-	\checkmark	16A5h	0000
P164	Option I/F command register to write 5	0000 to FFFF	-	\checkmark	16A6h	0000
P165	Option I/F command register to write 6	0000 to FFFF	-	\checkmark	16A7h	0000
P166	Option I/F command register to write 7	0000 to FFFF	-	\checkmark	16A8h	0000
P167	Option I/F command register to write 8	0000 to FFFF	-	\checkmark	16A9h	0000
P168	Option I/F command register to write 9	0000 to FFFF	-	\checkmark	16AAh	0000
P169	Option I/F command register to write 10	0000 to FFFF	-	\checkmark	16ABh	0000
P170	Option I/F command register to read 1	0000 to FFFF	-	\checkmark	16ACh	0000
P171	Option I/F command register to read 2	0000 to FFFF	-	\checkmark	16ADh	0000
P172	Option I/F command register to read 3	0000 to FFFF	-	\checkmark	16AEh	0000
P173	Option I/F command register to read 4	0000 to FFFF	-	\checkmark	16AFh	0000
P174	Option I/F command register to read 5	0000 to FFFF	-	\checkmark	16B0h	0000
P175	Option I/F command register to read 6	0000 to FFFF	-	\checkmark	16B1h	0000
P176	Option I/F command register to read 7	0000 to FFFF	-	\checkmark	16B2h	0000
P177	Option I/F command register to read 8	0000 to FFFF	-	\checkmark	16B3h	0000
P178	Option I/F command register to read 9	0000 to FFFF	-	\checkmark	16B4h	0000
P179	Option I/F command register to read 10	0000 to FFFF	-	\checkmark	16B5h	0000
P180	Profibus Node address	0 to 125	-	\times	16B6h	0
P181	Profibus Clear Node address	00(clear)/01(not clear)	-	x	16B7h	00
P182	Profibus Map selection	00(PPO)/01(Comvertional)	-	x	16B8h	00
P190	CompoNet Node address	0 to 63	-	x	16C0h	0
P192	DeviceNet MAC ID	0 to 63	-	x	16C2h	63
P195	ML2 frame length	00 (32 byte) / 01 (17 byte)	-	\times	16C5h	00
P196	ML2 Node address	21-3E	-	\times	16C6h	21

4.7 Parameter group F

Function code	Function name	Monitoring and setting items	Units	Run mode edit	Modbus Register No.	Default
F001 (32-bits)	Output frequency	0.00 to 400.00	0.01 [Hz]	\checkmark	0001h	6.00
					0002h	
F002 (32-bits)	Acceleration time (1)	0.01 to 3600.00	0.01 [s]	\checkmark	1103h	10.00
					1104h	
F003(32-bits)	Deceleration time (1)	0.01 to $\mathbf{3 6 0 0 . 0 0}$	0.01 [s]	\checkmark	1105h	10.00
					1106h	
F004	Keypad Run key routing	00: Forward, 01:Reverse	-	\times	1107h	00

4.8 Parameter group U: User parameters

Any function code can be register on these 32 parameters. When display mode is set be "user parameter" only U001 to U032 plus d001, F001, b037 are displayed.

Function code	Function name	Monitoring and setting items	Units	Run mode edit	Modbus Register No.	Default
U001	Usesr parameter 1	"no", d001-P183	-	\checkmark	-	no
...	-	\checkmark	-	no
U032	User parameter 32	"no", d001-P183	-	\checkmark	-	no

UIIITVII

MX2 Quick Start Guide

